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Abstract
This paper develops a rotation-invariant needlet
convolution for rotation group SO(3) to distill
multiscale information of spherical signals. The
spherical needlet transform is generalized from S2

onto the SO(3) group, which decomposes a spher-
ical signal to approximate and detailed spectral
coefficients by a set of tight framelet operators.
The spherical signal during the decomposition
and reconstruction achieves rotation invariance.
Based on needlet transforms, we form a Needlet
approximate Equivariance Spherical CNN (NES)
with multiple SO(3) needlet convolutional layers.
The network establishes a powerful tool to extract
geometric-invariant features of spherical signals.
The model allows sufficient network scalability
with multi-resolution representation. A robust sig-
nal embedding is learned with wavelet shrinkage
activation function, which filters out redundant
high-pass representation while maintaining ap-
proximate rotation invariance. The NES achieves
state-of-the-art performance for quantum chem-
istry regression and Cosmic Microwave Back-
ground (CMB) delensing reconstruction, which
shows great potential for solving scientific chal-
lenges with high-resolution and multi-scale spher-
ical signal representation.

1. Introduction
Many data types in the real world can be modeled as spher-
ical data, such as omnidirectional images (Coors et al.,
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2018), molecules (Boomsma & Frellsen, 2017), and cos-
mic microwave background (Akrami et al., 2020). Such
spherical signals contain abundant topological features. Un-
fortunately, existing research (Caldeira et al., 2019; Yi
et al., 2020) usually maps spherical signals to R2 for conve-
nient modeling with convolutional neural networks (CNNs),
which results in distorted signals and ineffective shift equiv-
ariance (Marinucci et al., 2008).

Alternatively, geometric deep learning (Bronstein et al.,
2017; 2021) provides a universal blueprint for learning sta-
ble representation of high-dimensional data in different do-
mains to build equivariant or invariant neural network layers
that respect exact or approximate data symmetries, such as
translation, rotation, and permutation. As a fundamental
requirement for many applications, it has been proven crit-
ical to preserving the symmetry property in deep learning
algorithm design (Baek et al., 2021; Davies et al., 2021;
Méndez-Lucio et al., 2021).

Equivariance is a significant property of geometric deep
learning models as required by many physical sciences,
such as chemistry (Atz et al., 2021) and biology (Town-
shend et al., 2021). This paper develops a scalable geo-
metric deep learning model for spherical signal processing
and learning with theoretically guaranteed rotation equiv-
ariance. Our model is based on needlet convolution on S2

and rotation group SO(3). The former describes the data
representation on spherical point locations, while the latter
records three-dimensional rotation angles of the signal. The
input data features are embedded in each spherical point.
The main convolution computational unit is based on spher-
ical needlets, which define a wavelet-like system on the
two-dimensional sphere S2 that forms a tight frame on the
sphere (Narcowich et al., 2006a;b; Wang et al., 2017). A
needlet is characterized by a highly-localized spherical ra-
dial polynomial, which covers a large scale but captures
detailed features in local regions.

The needlet convolution on SO(3) decomposes spherical
signals into low-pass and high-pass needlet coefficients. By
separately storing and processing approximate and detailed
information of the input, the network establishes hidden
embeddings with enhanced scalability. In addition, the
wavelet shrinkage operation (Donoho, 1995; Baldi et al.,
2009) gains robust representations by filtering out redun-
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Figure 1. This figure shows the framework of our NES. As the left column shows, we first carry on a non-equispaced fast Fourier transform
(NFFT) with predefined weights on the spherical signal. The following are an S2-Needlet Convolution and SO(3)-Needlet Convolutions,
which can be used to decompose the signal in multi scales. Then, we use the inverse NFFT (iNFFT) over the output of the SO(3)-Needlet
Convolution and feed the reconstructed signal into the downstream predictor.

dant high-pass information in the framelet domain. The
exact multiscale embeddings by SO(3)-needlet convolutions
are invariant to rotation. Such convolutions can construct a
deep neural network that distills the geometric invariant fea-
tures of a spherical signal. We name it Needlet approximate
Equivariance Spherical CNN (NES). Inside the network,
we utilize the convolution over the rotation group in multi
scales to guarantee rotation equivariance.

The NES with shrinkage activation gains provably approxi-
mate equivariance, where the equivariance error diminishes
at sufficiently high scales. Moreover, the needlet convolu-
tion is implemented efficiently with fast Fourier transforms
(FFTs) on the sphere and rotation group. We validate the
proposed NES on different real-world scientific problems
with high-resolution and multi-scale spherical signal inputs
including regressing quantum chemistry molecules and re-
constructing lensing Cosmic Microwave Background, for
which our method achieves state-of-the-art performance.

2. Spherical Needlet Framework
Needlets are a type of framelets (Wang & Zhuang, 2020;
Han, 2017) that enjoys good localization properties in both
spatial and harmonic spaces. We formulate a spherical
needlet transform, which projects the given spherical sig-
nal to a set of multi-scale needlet representations in the

framelet domain. The new representations can be uniquely
decomposed. They are easy to compute, and divide approxi-
mate and detailed information into different scale levels, as
traditional wavelets.

2.1. Characterization of Multi-scale Spherical Needlets

Needlets are defined on a Riemannian manifold M.
This paper considers a special case of M, i.e., on
S2 or SO(3). We define the spherical needlets with
a filter bank η :=

{
a; b1, . . . , br

}
⊂ l1(Z) :={

h = {hk}k∈Z ⊂ C :
∑
k∈Z |hk| <∞

}
and a set of asso-

ciated generating functions Ψ = {α;β1, · · · , βr} ⊂ L1(R).
We name filter a the low-pass filter, and filters {b1, · · · , br}
the high-pass filters. The former distills approximate infor-
mation from the input signal, and the latter reserves more
detailed information and together with noise. The associated
generating functions and filter bank satisfy the relationship

α̂(2ξ) = â(ξ)α̂(ξ), β̂n(2ξ) = b̂n(ξ)α̂(ξ), (1)

where n = 1, . . . , r, and ξ ∈ R.

To discretize the continuous needlets with zero numerical
error, we utilize Polynomial-exact Quadrature Rule (Wang
et al., 2017) that are generated by the tensor product of
the Gauss-Legendre nodes on the interval [−1, 1] and equi-
spaced nodes in the dimension with non-equal weights, such
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as longitude on sphere. Let vj,k represent low-pass coef-
ficients, and wnj,k represent high-pass coefficients of the
signal function f , where k = 0, . . . , Nj+1 and j ≥ J , Nj
is the number of sampling points at scale j. The low-pass
(or high-pass) coefficients are defined by the inner prod-
ucts of low-pass (or high-pass) needlets and f . In practice,
we calculate the coefficients in the Fourier domain for fast
computation by

v̂j,` = f̂`α̂

(
λ`
2j

)
, ŵnj−1,` = f̂`β̂n

(
λ`

2j−1

)
. (2)

We denote f̂` as the generalized Fourier coefficients of f at
degree `. More details about the filter bank and construction
of needlets on S2 and SO(3) are given in Appendix B.

2.2. Spherical Needlet Convolution

The spherical needlet convolution onM is defined by

[φ ? f ](R) = 〈LRφ, f〉 =

∫
M
φ(R−1x)f(x)dx, (3)

where f is a signal, φ is a learnable locally supported filter,
LRφ(x) = φ(R−1x), andM represents S2 or SO(3). The
constructed needlet convolution is rotation equivariant. For-
mally, a neural network (i.e., a function onM) Φ is said
rotation equivariant if for an arbitrary rotation operator LR,
there exists an operator TR such that Φ ◦ LR = TR ◦ Φ.
A rotation equivariant neural network provides more effi-
cient and accurate prediction with theoretical support, which
properties are desired for rotatable signals. It is provable
that the convolution in (3) satisfies the Fourier theorem, i.e.,
[φ̂ ? f ]` = f̂` · φ̂†` , where † denotes the conjugate transpose
and ` is the degree parameter. The operation · is matrix
multiplication for SO(3) and outer product for S2.

The formulation in (3) has been adopted by Spherical CNN
(Cohen et al., 2018), which induces convolution on Fourier
coefficients. We define the convolution using needlet co-
efficients of a spherical signal. We construct the needlet
coefficients with the needlet system defined in Section 2.1.
We take n = 2 and get {v̂1,`}

ΛJ0

`=1 , {ŵ1
1,`}

ΛJ1

`=1 and {ŵ2
1,`}

ΛJ1

`=1

for a low-pass and two high-pass needlet coefficients, where
Λj denotes sequence length of Fourier series of quadrature
rule sampling points at scale j, and J0, J1 are the scale of
low pass and high pass respectively.

These needlet coefficients can be used to reconstruct the
Fourier coefficients f̂ of signal f of degree `. We denote
this relation as

[
v̂1,`, ŵ

1
1,`, ŵ

2
1,`

]> � f̂`, where � means
formal equivalence. We hereby establish formally an equiv-
alent expression of [φ̂ ? f ]` with multi-scale information

and rotation equivariance:φ̂1`

φ̂2`

φ̂3`

� f̂` �
φ̂1`

φ̂2`

φ̂3`

�
 v̂1,`

ŵ1
1,`

ŵ2
1,`

 =


φ̂1` · f̂`α̂

(
λ`

2J0

)
φ̂2` · f̂`β̂1

(
λ`

2J0

)
φ̂3,` · f̂`β̂2

(
λ`

2J0

)


=


[φ̂1 ? f ]`α̂

(
λ`

2J0

)
[φ̂2 ? f ]`β̂1

(
λ`

2J0

)
[φ̂3 ? f ]`β̂2

(
λ`

2J0

)
 � [φ̂ ? f ]`.

Here φ̂i` (i = 1, 2, 3) are three learnable filters defined in
the frequency domain and � is the Hadamard product.

2.3. Rotation equivariance Error

Shrinkage Function One potential drawback of the
spherical CNNs comes from the non-linear activation in
each layer. The Fourier transforms introduce redundancy
to feature representation in the frequency domain, which
results in a heavy computational cost. To best preserve ro-
tation equivariance at a reduced computational complexity,
we employ a non-linear activation directly in the frequency
domain with a small rotation equivariance error. Similar
to UFGConv (Zheng et al., 2021), we cut off the high-pass
coefficients x in the frequency domain by a shrinkage thresh-
olding, i.e.,

Shrinkage(x) = sgn(x)(|x| − λ)+,∀x ∈ R,

with the threshold value λ = σ
√

2log(N)/
√
N for N coef-

ficients. The hyperparameter σ is an analogue to the noise
level of the denoising model. Note that we do not cut off
the low-pass framelet coefficients, as they distill important
approximate information of input data. It is critical to offer-
ing an approximate rotation equivariance for the shrinkaged
needlet convolution, as we discuss as follows.
Theorem 2.1. Let Ws

p(S2) with s > 2/p and 1 ≤ p ≤ ∞
be a Sobelev space embedded in Lp(S2). For f ∈Ws

p(S2),
φ is a filter, then the rotation equivariance error due to
using the shrinkage function is defined as the maximum of
the following over all R ∈ SO(3),

E(f) =

max
R∈SO(3)

B∑
`=0

∥∥∥∥Shr(L̂Rf ? φ)
(H)
` −D`(R)Shr(f̂ ? φ

(H)

` )

∥∥∥∥2

,

where B is the bandwidth for spherical signal embedding
depending on the specific quadrature rule used, Shr(·) rep-
resents shrinkage function, superscript (H) indicates the
high-pass coefficients. Then, the approximate equivariance
error for f is

E(f) ≤ C2−(J0+1)s,

where J0 is the scale of the low pass, C is a constant de-
pending only on s, φ and the Sobolev norm of f .
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Table 1. Test accuracy on spherical MNIST with varying scales.

Downscale Ratio 10% 30% 50% 70% 90%

Spherical CNN 94.99 92.17 86.92 83.73 78.71
NES 97.84 97.30 96.74 95.21 92.66

The shrinkage mechanism thus introduces a stable rotation
equivariance error. The condition in Theorem 2.1 s > 2/p
indicates that each function of Ws

p(S2) has a representation
in the continuous function space on S2. Then, the numerical
computation for f makes sense. The proof of Theorem 2.1
is given in Appendix F.

Pooling Operator We also establish a spectral pooling
in the frequency domain to circumvent repeated Fourier
transforms. A spectral pooling removes coefficients with
degree larger than `/2 for the spectral representation f̂ =

[f̂0, f̂1, · · · , f̂`]. We prove that the spectral pooling operator
is rotation equivariant (see Appendix G).

Network Architecture The framework is scalable to any
application scenarios that can be represented by spherical
signals. We illustrate the overall workflow of our proposed
Needlet Spherical CNNs in Figure 1 with application sce-
nario for bio-molecular prediction, where the input is a set
of spherical signals centered at atoms of a molecule. The
spherical data is sampled on the points of a polynomial-
exact quadrature rule. Based on the rule, we implement
non-equispaced fast Fourier transforms (NFFTs) with prede-
fined weights. The Fourier representations are sent through
an S2-needlet convolution to SO(3). A number of rotation
equivariant SO(3)-needlet convolutions are repeatedly con-
ducted. Inside each needlet convolution, we use a wavelet
shrinkage to threshold small high-pass coefficients, follow-
ing a pooling operator to downsize the representation. The
final output of SO(3)-needlet convolution is handled by the
inverse NFFT (iNFFT) to feed into a downstream predictor.

3. Experiments
The main advantage of our model is the property of equivari-
ance to SO(3) transforms with multiscale representation for
complicated real-world application. This section validates
the model with three experiments. Our models are trained
on 24G NVIDIA GeForce RTX 3090 Ti GPUs. The hyper-
parameters are obtained by grid search. Adam (Kingma &
Ba, 2014) is used as our optimizer.

3.1. Local MNIST Classification

Dataset The first experiment evaluates the effectiveness
of the needlet convolution neural network in capturing high-
frequency information. We follow Cohen et al. (2018)

Figure 2. Illustration of a projected MNIST digit onto the sphere
with 3 different downscale ratios (10%, 50%, 90%, left to right).
The higher downscale indicates that the size of the digit is smaller
on the sphere, which increases the difficulty of the model feature
extraction where more detailed information needs captured.

and use a modified spherical MNIST classification dataset,
where the images are projected onto a sphere to establish
rotated training and test sets. Here the samples of the train-
ing set are all rotated by the same rotation while those in the
test set are rotated by another rotation. We downscale the
original MNIST images into five different resolutions and
then project them onto a scalable area of the sphere.

Setup Our model is compared with Spherical CNN (Co-
hen et al., 2018). We adopt the same architecture S2conv-
ReLU-SO(3)conv-ReLU-FC-softmax, with bandwidth L =
30, 10, 6 and k = 20, 40, 10 channels: when it comes to our
model, we replace S2conv and SO(3)conv with S2-needlet
convolution and SO(3)-needlet convolution, bandwidth L =
30, 10, 6 and k = 20, 40, 10 channels. We select the batch
size of 64 and learning rate 0.001.

Results The test accuracy for spherical MNIST is pre-
sented in Table 1. To test the rotation equivariance of the
models, we rotate the training dataset and test dataset with
two different rotations. That is, the input training data are
all rotated with a same rotation in SO(3), and all test data
are rotated by another rotation. We also test on downscaled
datasets with various scales: the higher the scale, the less
size of the spherical digit is on the sphere, and the signal is
more localized. Table 1 indicates that both models keep high
test accuracy with both training and test data rotated. We
can observe that our model consistently achieves high accu-
racy on datasets for different downscale ratios. Especially
for the high ratio, the digit is concentrated at a small region,
and the model is required to capture more details of the
spherical data. In contrast, Spherical CNN has poorer per-
formance with higher downscale. It demonstrates a reliable
performance of our model in effectively distilling detailed
and local features while maintaining rotation equivariance
of the needlet convolutional layer.

3.2. Molecular Property Prediction

Datasets The second experiment predicts molecular prop-
erty over two widely used datasets (QM7 and MD17
(Chmiela et al., 2017) ) to evaluate the model’s expres-
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Figure 3. An illustration for computing the spherical signal of a
molecule. We aggregate the information of each atom in the
molecule with relative distance, polar angle and azimuthal angle.

Table 2. Test RMSE of atomic energy on QM7. † indicates the
method is rotation equivariant.

Method RMSE Params

MLP/SORTED CM 16.06 -
MLP/RANDOM CM 5.96 -
GCN 7.32 ± 0.23 0.8M
SPHERICAL CNN† 8.47 1.4M
CLEBSCH–GORDAN† 7.97 ≥1.1M

NES† (Ours) 7.21 ± 0.46 0.9M

sivity to bio-molecular simulation. QM7 contains 7, 165
molecules. Each molecule contains at most N = 23 atoms
of T = 5 types (H, C, N, O, S), which is to regress over the
atomic energy of molecules given the corresponding posi-
tion pi and charges zi of each atom i. MD17 predicts the
energies and forces at the atomic level for several organic
molecules with up to 21 atoms and four chemical elements,
using the molecular dynamics trajectories.

We follow Rupp et al. (2012) to generate spherical sig-
nals for every molecule. We define a sphere Si centered
at pi for each atom i and define the potential functions
as Uz(x) =

∑
j 6=i,zj=z

zi·z
‖x−pi‖ , where z is the charge of

the atom, and x is taken from S2. For every molecule,
N spherical signals are produced in T channels. We use
the Gauss-Legendre rule to discretize the continuous func-
tions on the sphere with L = 20 and create a sparse
N × T × (2L + 1) × (L + 1) tensor as the input signal
representation. For QM7, we generalize the Coulomb ma-
trix (C ∈ RN×N ) and obtain 23 spherical signals for every
molecule. For MD17, we create N spherical signals that
are centered at the positions of each atom for every sample,
where N is the number of atoms in the molecule. For the
atom i, we define a corresponding spherical signal Ui(x),
where x is taken from the sphere by the Gauss-Legendre
sampling method. The relative position of each atom to x is
calculated with the absolute Cartesian coordinates of atoms

Table 3. Test MAE of forces in meV/Å on MD17.

Molecule sGDML SchNet DimeNet SphereNet NES

Aspirin 29.5 58.5 21.6 18.6 15.2
Ethanol 14.3 16.9 10.0 9.0 9.2
Malonaldehyde 17.8 28.6 16.6 14.7 13.6
Naphthalene 4.8 25.2 9.3 7.7 3.5
Salicylic 12.1 36.9 16.2 15.6 14.2
Toluene 6.1 24.7 9.4 6.7 6.1
Uracil 10.4 24.3 13.1 11.6 10.8

provided by MD17. The spherical signal Ui is defined as
Ui(x) =

∑N
j=1N (dj , θj , ϕj), where (dj , θj , ϕj) is the po-

sition of atom j relative to x. The dj , θj , and ϕj denote
the radial distance, polar angle, and the azimuthal angle
respectively (see Figure 3). Different with QM7, MD17
does not have a Coulomb matrix. The number of spherical
signals N can thus be taken from a neural network or a
mathematical operator to extract effective features with the
relative positions. Here we choose the first approach of neu-
ral networks to adaptively learn feature. We fine-tune the
hyperparameters individually for every type of molecules
on the validation sets with 1, 000 samples for each type.

Setup The bandwidth L is from 20, 20, 10, 10, 5 to 5
in the final block and the feature dimension is from
5, 5, 8, 16, 32 to 64. The hyperparameter σ is taken as 0.001
for shrinkage. We run 10 epochs for QM7 with a batch size
of 32 and a learning rate of 5e− 4. For MD17, we choose
a batch size of 32 and a learning rate of 2e− 4. We run the
model for 1, 000 epochs.

Results We report the experimental results of QM7 and
MD17 respectively in Tables 2-3. For QM7, we compare
the root mean square error (RMSE) of our proposed NES
with MLP/Random CM, MLP/Sorted CM (Montavon et al.,
2012), GCN (Kipf & Welling, 2017), Spherical CNN (Co-
hen et al., 2018) and Clebsch-Gordan Net (Kondor et al.,
2018). The scores are averaged over 10 trials with standard
deviation. Our model uses approximately 0.9 million pa-
rameters to achieve the lowest RMSE at 7.21± 0.46 among
all rotation equivariant models. Our model enjoys the advan-
tages of both a smaller number of parameters and a lower
prediction error, owing to the incorporation of efficient com-
putation and multiscale analysis architecture. In MD17 task,
we focus on atomic forces and measure the mean absolute
error (MAE) averaged over all samples and atoms. SchNet
(Schütt et al., 2017) and DimeNet (Chmiela et al., 2018) are
3D graph models that incorporate relative distance informa-
tion. SphereNet (Liu et al., 2021) is a 3D graph model with
physically-based representations of geometric information.
Most of previous state-of-the-art models are graph-based
models with hand-engineered features or expert knowledge.
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Figure 4. B-CMB multipoles unlensed map with tensor-to-scalar
ratio r = 0.2, which is one of the main constraints in detecting
the Primordial Gravitational Wave Background. We color the map
with the intensity values to predict.

Instead, our model utilizes the adaptive learning of input
features and incorporates multiscale analysis to improve the
representation ability. Results show that the proposed model
outperforms baseline models with strong performance and
better generalization in molecular simulation, due to the
rotation equivariance. NES achieves better performance
on four types of molecules. Compared to NES, sGDML
(Chmiela et al., 2018) is a kind of kernel method, which re-
lies on human expertise and extra annotation, thus suffering
from poor generalization to a new type of molecule.

3.3. Delensing Cosmic Microwave Background

The existence of a stochastic Primordial Gravitational Wave
Background (PGWB) is a common prediction in the major-
ity of inflationary models. It is formed when microscopic
quantum fluctuations of the metric were stretched up to
super-horizon scales by the sudden expansion of space-time
that occurred during inflation (Caprini & Figueroa, 2018).
Since it has been able to free-stream from time as early
as (possibly) the Planck time, PGWB has the potential of
becoming one of the most powerful cosmological probes.
The information about phase transitions and particle cre-
ation/annihilation may have taken place in the early universe,
which allows new independent measurements of cosmologi-
cal parameters. In order to discover PGWB, we need to con-
strain some parameters, such as the ratio between tensor and
scalar perturbations r = Pt(k)/Ps(k). Such a parameter
relies on a high signal-to-noise ratio (SNR) reconstruction
of the lensing potential, i.e., the projected weighted gravita-
tional potential along the line-of-sight between us and the
CMB. Photons in the CMB are deflected by the intervening
mass distributions when they travel to us. The lensing effect
distorts the recombination of the CMB and interferes with
our ability to constrain early universe physics. Therefore,
removing the lensing effect from observed data is critical
to decoding early-universe physics. In this experiment, we
use NES convolution to reconstruct the unlensed B-mode

Figure 5. The power spectrum of unlensed B-map predicted by
NES compared with Spherical CNNs and the ground truth.

(Figure 4) component of the CMB polarization from the
lensed Q,U maps that are orthonormal bases corresponding
to Stokes parameters.

Dataset Spherical CNN and NES are used to reconstruct
the unlensed B map from the lensed Q,U maps. We sim-
ulate 10, 000 lensed Q,U maps and B-CMB multipoles
unlensed map with NSide = 64. Then, transforming the
original sample rules from HEALPix to Gauss-Legendre
tensor product rules with the bandwidth L = 128 by taking
the average of the four nearest HEALPix points in Gauss-
Legendre coordinates. We split the whole dataset into 80%
training, 10% validation, and 10% test sets.

Setup We follow the U-Net architecture from (Caldeira
et al., 2019) and replace the standard image convolution with
Spherical CNN and NES. In the encoder, the bandwidth is
128, 64, 32, 16 and the feature dimensions are 2, 16, 32, 64
respectively in each block. In the decoder, the bandwidth in-
creases from 16, 32, 64 to 128. The encoder layers are skip-
connected to decoder layers, which is consistent with the
standard architecture of U-Net. We sum the mean squared
error (MSE) in the pixel domain and in power spectrum as
the loss function. We use a batch size of 16, a learning rate
of 5e− 5, and weight decay of 3e− 4 to train the model.

Result Figure 5 compares the power spectrum of two mod-
els’ predicted B-unlensed map with ground truth. We can
see Spherical CNNs always underestimates the ground truth
when degree l is larger than 20. NES can capture more high-
frequency information of data in each block during training.
The estimated power spectrum of the model is consistent
with the ground truth even at a large degree of l ≥ 100.

4. Conclusion
We develop a Needlet approximate Equivariance Spherical
CNN using multiscale representation systems on the sphere
and rotation group. The needlet convolution inherits the
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multiresolution analysis ability from needlet transforms and
allows rotation invariance in network propagation. Wavelet
shrinkage is used as a network activation to filter out the
high-pass redundancy, which helps improve the robustness
of the network. The shrinkage brings controllable equivari-
ance error for the needlet CNN, which is small when the
scale is high. Empirical study shows the proposed model can
achieve excellent performance on real scientific problems.
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A. Generalized Fourier Transform
Denoting the manifold (S2 or SO(3)) by M. The basis
functions are spherical harmonics (Y `m(R)) and Wigner D-
functions (D`

mn(R)) for S2 and SO(3) respectively. Denote
the basis functions as u`. We can write the generalized
Fourier transform of a function f :M→ R with quadrature

rule sampling at scale j as

f̂` = 〈f, u`〉 =

∫
M
f(x)u`(x)dx

=

Nj∑
k=0

f(xj,k)
√
ωj,ku`(xj,k).

The inverse Fourier transforms on S2 and SO(3) are as
follows,

f(R) = [F−1f̂ ](R) =

∞∑
`=0

(2`+ 1)
∑̀
m=−`

f̂ `mY
`
m(R)

f(R) = [F−1f̂ ](R) =

∞∑
`=0

(2`+ 1)
∑̀
m=−`

∑̀
n=−`

f̂ `mnD
`
mn(R).

Let (α, β) with α ∈ [0, 2π] and β ∈ [0, π] be the spherical
polar coordinates for x ∈ S2. The spherical harmonics can
be explicitly written as

Y`,m(α, β) :=

√
2`+ 1

4π

(`−m)!

(`+m)!
P

(m)
` (cosβ)eimα,

where P (m)
` (t) is the associated Legendre Polynomial of

degree ` and order m, m = −`, . . . , `, ` = 0, 1, . . .. We
use the ZYZ Euler parameterization for SO(3). An ele-
ment R ∈ SO(3) can be parameterized by R(α, β, γ) with
α ∈ [0, 2π], β ∈ [0, π] and γ ∈ [0, 2π]. There exists a gen-
eral relationship between Wigner D-functions and spherical
harmonics:

D`
ms(α, β,−γ) = (−1)s

√
4π

2`+ 1 s
Y m` (β, α)eisγ .

B. Needlets on S2 and SO(3)

Tight framelets on manifoldM is defined by a filter bank
(a set of complex-valued filters) η :=

{
a; b1, . . . , br

}
⊂

l1(Z) :=
{
h = {hk}k∈Z ⊂ C :

∑
k∈Z |hk| <∞

}
and a

set of associated scaling functions, Ψ = {α;β1, · · · , βr} ⊂
L1(R), which is a set of complex-valued functions on
the real axis satisfying the following equations, for r =
1, . . . , n, ξ ∈ R,

α̂(2ξ) = â(ξ)α̂(ξ), β̂n(2ξ) = b̂n(ξ)α̂(ξ).

Here a(·) is called the low-pass filter and b(r)(·) are
high-pass filters. Let {(u∞`=1, λ`)}` be the eigenvalue and
eigenvector pairs for L2(M). The framelets at scale level
j = 1, · · · , J for manifoldM are generated with the above
scaling functions and orthonormal eigen-pairs as

ϕj,y(x) =

Λj∑
`=1

α̂

(
λ`
2j

)
u`(y)u`(x)

ψnj,y(x) =

Λj∑
`=1

β̂(n)

(
λ`
2j

)
u`(y)u`(x)



Approximate Equivariance SO(3) Needlet Convolution

ϕj,y(x) and {ψnj,y(x)}rn=1 are low-pass and high -pass
framelets at scale j at point y ∈M. Λj is the bandwidth of
scale level j and n = 1, · · · , r depending on the support of
scaling functions α̂ and β̂(n).

Needlets are a type of framelets on the sphere Sd associated
with a quadrature rule and a specific filter bank. This type of
framelets can be generalized to rotation group SO(3) with
the same filter bank. For simplicity, we consider the filter
bank η = {a; b1, b2} with two high-pass filters. We define
the filter bank η = {a; b1, b2} by their Fourier series as
follows.

â(ξ) :=


1, |ξ| < 1

8 ,

cos
(
π
2 ν(8|ξ| − 1)

)
, 1

8 6 |ξ| 6 1
4 ,

0, 1
4 < |ξ| 6

1
2 ,

b̂1(ξ) :=


0, |ξ| < 1

8 ,

sin
(
π
2 ν(8|ξ| − 1)

)
, 1

8 6 |ξ| 6 1
4 ,

cos
(
π
2 ν(4|ξ| − 1)

)
, 1

4 < |ξ| 6
1
2 ,

b̂2(ξ) :=

{
0, |ξ| < 1

4

sin
(
π
2 ν(4|ξ| − 1)

)
, 1

4 6 |ξ| 6 1
2 ,

(4)

where

ν(t) := χ3(t)2 = t4
(
35− 84t+ 70t2 − 20t3

)
, t ∈ R.

It can be verified that

|â(ξ)|2 +
∣∣∣b̂1(ξ)

∣∣∣2 +
∣∣∣b̂2(ξ)

∣∣∣2 = 1 ∀ξ ∈ [0, 1/2].

Then, the associated needlets generators Ψ = {α;β1, β2}
is explicitly given by

α̂(ξ) =

 1, |ξ| < 1
4 ,

cos
(
π
2 ν(4|ξ| − 1)

)
, 1

4 6 |ξ| 6 1
2 ,

0, else ,

β̂1(ξ) =


sin
(
π
2 ν(4|ξ| − 1)

)
, 1

4 6 |ξ| < 1
2 ,

cos2
(
π
2 ν(2|ξ| − 1)

)
, 1

2 6 |ξ| 6 1,

0, else ,

β̂2(ξ) =


0, |ξ| < 1

2
1
2 sin (πν(2|ξ| − 2)) , 1

2 6 |ξ| 6 1

0, else.

(5)

The framelet coefficients vj,k represent low-pass coeffi-
cients, and wnj,k represent high-pass coefficients. They are
defined as 〈ϕj,k, f〉 and 〈ψnj,k, f〉 respectively. We can cal-
culate the coefficients in the Fourier space, as shown in

Eq. (7) below.

vj,k =

Λj∑
`=0

f̂`α̂

(
λ`
2j

)
√
ωj,ku` (xj,k)

wnj−1,k =

Λj∑
`=0

f̂`β̂n
(

λ`
2j−1

)
√
ωj,ku` (xj,k)

(6)

v̂j,` = f̂`α̂

(
λ`
2j

)
, ŵnj−1,` = f̂`β̂n

(
λ`

2j−1

)
. (7)

C. Polynomial-exact Quadrature Rule
Let QNj

= {(ωj,k,xj,k) ∈ R×M : k = 0, . . . , Nj} be a
polynomial-exact quadrature rule at scale j withNj weights
ωj,k ∈ R andNj pointsxj,k ∈M. We use Gauss-Legendre
tensor product rule which is generated by the tensor product
of the Gauss-Legendre nodes on the interval [−1, 1] and
equi-spaced nodes in the other dimension with non-equal
weights. By using polynomial-exact quadrature rule, the
integral of polynomial of degree less than a certain l yields
zero numerical error. We use QNj and QNj+1 to discretize
the continuous framelets ϕj,y and ψnj,y(n = 1, · · · , r) in
Eq. (8) respectively as follows.

ϕj,k(x) =
√
ωj,k

Λj∑
`=1

α̂

(
λ`
2j

)
u` (xj,k)u`(x)

ψnj,k(x) =
√
ωj+1,k

Λj∑
`=1

β̂n
(
λ`
2j

)
u` (xj+1,k)u`(x).

(8)
The generalized Fourier coefficients f̂`, ` = 0, 1, · · · ,Λj ,
are calculated as

f̂` =

∫
M
f(x)u`(x)dx =

Nj∑
k=0

f(xj,k)
√
ωj,ku`(xj,k).

For (8) with scaling functions (5) when the support of the
scaling functions is in [−1, 1], the quadrature rule is needed
to set exact for degree ≤ 2j+1 at scale j.

The inverse generalized Fourier transform is defined by

f(xj,k) =

Λj∑
`=1

f̂`
√
ωj,ku`(xj,k), k = 0, 1, · · · , Nj

For S2 signal, basis functions {u`}` are usually the spherical
harmonics Y `m : S2 → C indexed by l ≥ 0 and −l ≤ m ≤
l . For SO(3) signal, basis functions {u`}` are usually
Wigner-D functions D`

mn : SO(3) → C indexed by l ≥ 0
and −l ≤ m,n ≤ l. More details about Y lm and D`

mn are
given in Appendix A.

We let vj,k represent low-pass coefficients, and wnj,k repre-
sent high-pass coefficients, which are defined as 〈ϕj,k, f〉
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and 〈ψnj,k, f〉 respectively. We can calculate the coefficients
in the Fourier space:

v̂j,` = f̂`α̂

(
λ`
2j

)
, ŵnj−1,` = f̂`β̂n

(
λ`

2j−1

)
. (9)

D. Conditions of Tightness of Needlet System
In the implementation, we need the discrete version of
needlets. We get discrete needlets ϕj,k(x) and ψnj,k(x)
at scale j with quadrature rule sampling (Wang et al., 2017).
Let Q = {QNj

}j>J , the set of quadrature rules at scale
j > J , and define the needlet system as

FSJ(Ψ,Q) := {ϕJ,k} ∪
{
ψnj,k : j > J ;n 6 r

}
,

where k = 0, . . . , NJ for ϕJ,k and k = 0, . . . , Nj+1 for
ϕnJ,k. The tight needlet system can be constructed on a
general Riemannian manifold.

Definition D.1. LetM be the compact and smooth Rieman-
nian manifold. The needlet system FSJ(Ψ,Q) is said to be
tight for f ∈ L2(M) if and only if FSJ(Ψ,Q) ⊂ L2(M)
and

f =

NJ∑
k=0

〈f,ϕJ,k〉ϕJ,k +

∞∑
j=J

Nj+1∑
k=0

r∑
n=1

〈
f,ψnj,k

〉
ψnj,k

(10)
or equivalently,

‖f‖2L2(M) =

NJ∑
k=0

|〈f,ϕJ,k〉|2 +

∞∑
j=J

Nj+1∑
k=0

r∑
n=1

∣∣〈f,ψnj,k〉∣∣2 .
The tightness of needlet system on S2 is given in (Wang
& Zhuang, 2020). Here, the following theorem gives the
equivalence conditions of needlet systems FSJ(Ψ,Q) on
SO(3) to be tight frames for L2(SO(3)).

Theorem D.1. Let J0 ∈ Z be an integer and Ψ :=
{α;β1, . . . , βr} ⊂ L1(R) with r > 1 be a set the
needlet generators associated with the filter bank η :=
{a; b1, . . . , br} ⊂ l1(Z) as Eq. (4) and Eq. (5). Let
Q = {QNj}j>J , the set of quadrature rules QNj =
{(ωj,k,xj,k) ∈ R × SO(3) : k = 0, . . . , Nj}.
FSJ(Ψ,Q) ⊂ L2(SO(3)) is the needlet system. Then, the
following statements are equivalent.

1. The needlet system FSJ(Ψ,Q) is a tight frame for
L2(SO(3)) for all J > J0, i.e., Eq. (10) holds for all
J > J0.

2. For all f ∈ L2(SO(3)), the following identities hold

for all j > J0:

lim
j→∞

∥∥∥∥∥∥
Nj∑
k=0

〈f,ϕj,k〉ϕj,k − f

∥∥∥∥∥∥
L2(SO(3))

= 0

Nj+1∑
k=0

〈f,ϕj+1,k〉ϕj+1,k =

Nj∑
k=0

〈f,ϕj,k〉ϕj,k +

Nj+1∑
k=0

r∑
n=1

〈
f,ψnj,k

〉
ψnj,k.

(11)

3. For all f ∈ L2(SO(3)), the following identities hold
for all j > J0:

lim
j→∞

Nj∑
k=0

|〈f,ϕj,k〉|2 = ‖f‖2L2(SO(3)),

Nj+1∑
k=0

|〈f,ϕj+1,k〉|2

=

Nj∑
k=0

|〈f,ϕj,k〉|2 +

Nj+1∑
k=0

r∑
n=1

∣∣〈f, ψnj,k〉∣∣2 .
(12)

4. The generators in Ψ satisfy, for all `, `′ > 0 and j >
J0,

lim
j→∞

α̂

(
λ`
2j

)
α̂

(
λ`′

2j

)
U`,`′

(
QNj

)
=

δ`,`′

[
α̂

(
λ`

2j+1

)
α̂

(
λ`′

2j+1

)
−

r∑
n=1

β̂n
(
λ`
2j

)
β̂n
(
λ`′

2j

)]
×

U`,`′
(
QNj

)
= α̂

(
λ`
2j

)
α̂

(
λ`′

2j

)
U`,`′

(
QNj+1

)
,

(13)
where

U`,`′
(
QNj

)
:=

Nj∑
k=0

ωj,ku` (xj,k)u`′ (xj,k).

5. The filters in the filter bank η satisfy, for all j > J0 +1,

U`,`′
(
QNj

)
= â

(
λ`
2j

)
â

(
λ′`
2j

)
U`,`′

(
QNj−1

)
+

r∑
n=1

bn
(
λ`
2j

)
b̂n
(
λ`′

2j

)
U`,`′

(
QNj

)
,

(14)

where

σjα,ᾱ :=

{
(`, `′) ∈ N0 × N0 :

̂
α̂

(
λ`
2j

)
α̂

(
λ`′

2j

)
6= 0

}
.
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Proof. 1⇐⇒ 2: We define projections PΦj
and PΨj

as

PΦj
(f) :=

Nj∑
k=0

〈f, ϕj,k〉ϕj,k

PΨn
j
(f) :=

Nj∑
k=0

〈
f, ψnj,k

〉
ψnj,k.

Since the needlet system FSJ is tight for L2(SO(3) for all
J > J0,

f = PΦj (f) +

∞∑
j=J

r∑
n=1

PΨn
j
(f)

= PΦJ+1
(f) +

∞∑
j=J+1

r∑
n=1

PΨn
j
(f)

for all f ∈ L2(SO(3)) and all J > J0. Thus, in L2 sense,

PΦJ+1
(f) = PΦJ

(f) +

r∑
n=1

PΨn
j
(f).

Recursively, we have

PΦm+1
(f) = PΦJ

(f) +

m∑
j=J

r∑
n=1

PΨn
j
(f) (15)

for all m > J and J > J0. Let m → ∞, in L2 sense, we
obtain

lim
m→∞

PΦm+1(f) = PΦJ
(f) +

∞∑
j=J

r∑
n=1

PΨn
J
(f) = f,

(16)
which is Eq. (11). Consequently, we proof that 1 ⇐⇒ 2.
Conversely, by Eq. (11) and Eq. (15), let m→∞, we can
get Eq. (10). Thus, 2⇐⇒ 1.

2⇐⇒ 3: We can deduce the equivalence between 2 and 3
by polarization identity.

3 ⇐⇒ 4: For f ∈ L2(SO(3)), by the formulas in Eq. (8)
and the orthonormality of Wigner D-functions, which are
the basis of SO(3), we obtain

〈f,ϕj,k〉 =
√
ωj,k

∞∑
`=0

̂
α̂

(
λ`
2j

)
f̂`u` (xj,k)

〈
f,ψnj,k

〉
=
√
ωj+1,k

∞∑
`=0

̂
β̂n
(
λ`
2j

)
f̂`u` (xj+1,k) .

(17)

Then, we have

Nj∑
k=0

|〈f, ϕj,k〉|2 =

Nj∑
k=0

ωj,k

∣∣∣∣∣
∞∑
`=0

α̂

(
λ`
2j

)
f̂`u` (xj,k)

∣∣∣∣∣
2

=

∞∑
`=0

∞∑
`′=0

f̂`f̂`′ α̂

(
λ`
2j

)
α̂

(
λ`′

2j

) Nj∑
k=0

ωj,ku` (xj,k)u`′ (xj,k)

=

∞∑
`=0

∞∑
`′=0

f̂`f̂`′ α̂

(
λ`
2j

)
α̂

(
λ`′

2j

)
U`,`′

(
QNj

)
=

∞∑
`=0

∣∣∣f̂`∣∣∣2 ∣∣∣∣α̂(λ`2j

)∣∣∣∣2 U`,` (QNj

)
+

∞∑
`=0

∞∑
`′=0,`′ 6=`

f̂`f̂`′ α̂

(
λ`
2j

)
α̂

(
λ`′

2j

)
U`,`′

(
QNj

)
.

Then, Eq. (12) holds only and if only Eq. (13) holds.

4⇐⇒ 5: By condition 1, we have

α̂

(
λ`

2j−1

)
α̂

(
λ`′

2j−1

)
U`,`′

(
QNj−1

)
+

r∑
n=1

β̂n
(

λ`
2j−1

)
β̂n
(
λ`′

2j−1

)
U`,`′

(
QNj

)
= â

(
λ`
2j

)
â

(
λ`′

2j

)
U`,`′

(
QNj−1

)
α̂

(
λ`
2j

)
α̂

(
λ`′

2j

)
+

r∑
n=1

b̂n
(
λ`
2j

)
b̂n
(
λ`′

2j

)
U`,`′

(
QNj

)
α̂

(
λ`
2j

)
α̂

(
λ`′

2j

)

Therefore, the equivalence between Eq. (13) and Eq. (14)
holds.

E. Needlet Decompostion and Reconstruction

Algorithm 1 Decomposition of Multi-Level Needlet Trans-
form

Input: vJ – a (ΛJ , NJ)-sequence
Output: ({wnJ−1, w

n
J−2, . . . , w

n
J0
}rn=1, vJ0 )

vJ → v̂J
for j ← J to J0 + 1 do
v̂j−1 ←− v̂j,·â

(
2−jλ.

)
for n← 1 to r do
ŵnj−1 ←− v̂j,·b̂n

(
2−jλ.

)
wnj−1 ← ŵnj−1

end for
end for
vJ0 ← v̂J0

As Eq. (6), we have vj,k and wnj−1,k as (Λj , Nj) sequences.
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Algorithm 2 Reconstruction of Multi-Level Needlet Trans-
form

Input: ({wnJ−1, w
n
J−2, . . . , w

n
J0
}rn=1, vJ0 )

Output: vJ – a (ΛJ , NJ)-sequence
v̂J0 ← vJ0
for j ← J0 + 1 to J do

for n← 1 to r do
ŵnj−1 ←− wnj−1

end for
v̂j ←− (v̂j−1,·) â

(
2−jλ.

)
+
∑r
n=1 ŵn

j,·b̂
n
(
2−jλ.

)
end for
vJ ← v̂J

We have the following decomposition relation:

vj−1,k =

Λj−1∑
`=0

f̂`α̂

(
λ`

2j−1

)
√
ωj−1,ku` (xj−1,k)

=

Λj−1∑
`=0

f̂`α̂

(
λ`
2j

)
â

(
λ`
2j

)
√
ωj−1,ku` (xj−1,k)

=

Λj∑
`=0

v̂j,`α̂

(
λ`
2j

)
√
ωj−1,ku` (xj−1,k)

= [(vj ∗j a?) ↓j ] (k),

where ↓ denotes the down-sampling operator. Similarly, for
k = 0, . . . , Nj−1 and n = 1, . . . , r,

wnj−1,k =

Λj∑
`=0

f̂`β̂n
(

λ`
2j−1

)
√
ωj−1,ku` (xj−1,k)

=
(
vj ∗j (bn)

∗)
k
.

Therefore, we have the following identity,

ṽ := (vj−1 ↑j) ∗j a+

r∑
n=1

wnj−1 ∗j bn

= (((vj ∗j a?) ↓j) ↑j) ∗j a+

r∑
n=1

(
vj ∗j (bn)

?) ∗j bn
The multi-level decomposition and reconstruction algo-
rithms are shown as Algorithms 1 and 2. The Fourier
transforms in the algorithms can be implemented by FFT.
Thus, the fast multi-level needlet transform on S2 with N
the size of the input data has the computational complex-
ity O(N

√
logN). With needlet filters given, we can pre-

compute the need coefficients and store data as frequency
domain signals. Further decomposition into finer scale and
reconstruction to obtain lower-level approximation infor-
mation are also optional, depending on requirements of
applications.

F. Error Bound of Rotation Equivariance
In order to reduce the numerical error caused by repeated
forward and backward FFTs, and also to decrease the model
complexity, we apply non-linear shrinkage function on the
high-pass coefficients with an controllable parameter σ,
which is an analogue to the noise level of the denoising
model. Since the low-pass coefficients provide approximate
information of the input signal, our model contains the good
property of approximate rotation equivariance. According to
the needlets theory, the rotation equivariance error brought
about by using the shrinkage on the high passes is estimable.
The error is defined as Eq. (2.1), which has the convergence
order 2−(J0+1)s.

Proof. Define

fJ = f
(L)
J0

+ f
(H),J
J0

= f
(L)
J0

+

J∑
j=J0

〈f, ψj〉ψj

as the spherical needlet approximation. By Wang et al.
(2017, Theorem 3.12), for f ∈ Ws

p(S2) with s > 0 and

J > 0, we have ‖f − fJ‖ 6 C12−Js and
∥∥∥f − f (L)

J0

∥∥∥ 6

C22−J0s, C1 and C2 are constants that depend only on
d, p, s, h, and filter smoothness κ. Therefore,∥∥∥f (H),J

J0

∥∥∥2

=
∑
`62J

∥∥∥∥f̂ (H)
`

∥∥∥∥2

=
∥∥∥fJ − f (L)

J0

∥∥∥2

6 ‖f − fJ‖2 +
∥∥∥f − f (L)

J0

∥∥∥2

6 C12−Js + C22−J0s 6 C2−J0s,

(18)

where C is a sufficiently large constant depending on
d, p, s, h, κ, C1 and C2. The Eq. (18) holds for all J . Then,
Eq. (2.1) satisfies the following inequalities,

Error =

B∑
`=0

∥∥∥∥Shr(L̂Rf ? φ)
(H)
` −D`(R)Shr(f̂ ? φ

(H)

` )

∥∥∥∥2

=

B∑
`=0

∥∥∥Shr(D`(R)f̂
(H)
` φ̂`)−D`(R)Shr(f̂ (H)

` φ̂`)
∥∥∥2

6
B∑
`=0

∥∥∥Shr(D`(R)f̂
(H)
` φ̂`)

∥∥∥2

+
∥∥∥D`(R)Shr(f̂ (H)

` φ̂`)
∥∥∥2

6
∥∥∥D`(R)f̂

(H)
` φ̂`

∥∥∥2

+
∥∥D`(R)

∥∥2
∥∥∥f̂ (H)
` φ̂`

∥∥∥2

6 2

B∑
`=0

∥∥∥f̂ (H)
` φ̂`

∥∥∥2

.

If the scale of the low-pass is J0, then we obtain

Error 6 2
∑

`>2J0+1

∥∥∥f̂ (H)
` φ̂`

∥∥∥2

6 Cφ
∑

`>2J0+1

∥∥∥f̂ (H)
`

∥∥∥2

,
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where Cφ is a constant depending on the filter φ. By Parse-
val’s identity and Eq. (18),

Error 6 Cφ
∑

`>2J0+1

∥∥∥f (H)
J0+1

∥∥∥2

6 C̃φ2−(J0+1)s.

G. Rotation Equivariance of Spectral Pooling
Denote [D0(R), · · · , D`−1(R), D`(R)] as D(R), then

P(L̂Rf) = P([D0(R)f̂0, · · · , D`(R)f̂`])

= [D0(R)f̂0, · · · , D`/2(R)f̂`/2]

= P(f̂)� [D0(R), · · · , D`/2(R)]

= P(f̂)� P(D(R))

where � denotes element-wise multiplication, and P(·) de-
notes spectral pooling operator. Thus, the spectral pool-
ing operator is equivariant, due to the R-related operator
P(D(R)).

H. Ablation Study
H.1. Equivariance Error

It can be proven that our S2-needlet convolution, SO(3)-
needlet convolution without shrinkage and spectral pool-
ing are equivariant to SO(3) transforms for the continuous
case. In our implementation, we utilize the polynomial-
exact quadrature rule to sample the sphere to reduce the
numerical error due to discretization. Table 4 shows the
rotation equivariance error of the modules in our frame-
work. Experimental results verify that the errors are close to
the machine error of floating points, except SO(3)-needlet
convolution with shrinkage filtering. We observe that the
equivariance errors introduced by wavelet shrinkage with
a small value of σ (e.g., σ = 0.001) are 2e-4 and 5e-7 in
Single and Double floating-point format respectively, which
are negligible.

H.2. Sensitivity Analysis

As σ is a hyperparameter in shrinkage activation function,
it is critical to know how this value affects our model equiv-
ariant property. Therefore, we takes different values of σ
ranging from 1e-7 to 1 to see how the equivariant error
changes and how much this signal is compressed. We use
the SO(3) signal with the bandwidth L = 128 and send
it to the SO(3)-needlet convolution layer with J = 7. As
shown in Figure 6, when σ is larger than 0.1, the equivari-
ance error is about 0.1, which may lower the accuracy of
our equivariant network. When the σ is smaller than 1e-6,
the equivariance error is approaching to the single-precision

Operator Error (Single) Error (Double)

S2-CONV 2e-7 7e-16
SO(3)-CONV 1e-7 8e-16
SO(3)+RELU 1e-7 8e-16
SO(3)+SHRINKAGE 2e-4 5e-7
POOLING 0 0

Table 4. Equivariance Error Results. Single denotes Single-
precision floating-point format. Double denotes Double-precision
floating-point format. The values are calculated from the average
of ten trials. ReLU function in SO(3)+RELU is applied in the
spatial domain, thus involving an FFT and inverse FFT.

machine error. For compression rate, the shrinkage opera-
tion will cut off 20% signal information when σ is about 0.1
and approaching to 0 when σ is less than 1e-6.

Figure 6. Sensitivity analysis for σ. The equivariance error is near
machine error when σ is less than 1e-6. The shrinkage activation
function will nearly compress 20% signal information with σ =
0.1 and approximate the identity function as σ is close to 0.


