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Abstract

This work tackles the issue of directed evolution in computational protein design
that makes an accurate prediction for the function of a protein mutant. We de-
sign a lightweight pre-training graph neural network model for multi-task protein
representation learning from its 3D structure. Rather than reconstructing and op-
timizing the protein structure, the trained model recovers the amino acid types
and key properties of the central residues from a given noisy three-dimensional
local environment. On the prediction task for the higher-order mutants, where
many amino acid sites of the protein are mutated, the proposed training strat-
egy achieves remarkably higher performance by 20% improvement at the cost of
requiring less than 1% of computational resources that are required by popular
transformer-based state-of-the-art deep learning models for protein design.

1 Introduction

Mutation is a biological process where the amino acid (AA) type of one or multiple sites of a specific
protein is changed. While the wild-type proteins’ functions do not always meet the demand of
bio-engineering, it is vital to manually optimize the functionality, namely fitness, with favorable
mutations so that they are applicable in designing antibodies [30, 39, 49] or enzymes [37, 48].
Directed evolution aims at optimizing a protein’s functional fitness, where a greedy search is usually
conducted in the local sequence along the hundreds to thousands of AA sites in a protein to mutate to
proper AA types over 20 candidates to render a protein mutant with the highest gain-of-function [34].
Normally, multiple AA sites (∼5-10) of the protein need to be mutated to obtain a mutant with great
fitness [1, 8], namely deep mutants. However, the astronomical number of potential combinations
in deep mutants prevent systematic experiments from testing on all possible deep mutants.

Alternatively, in silico examination of protein variants’ fitness becomes highly desirable. A handful
of deep learning methods have been developed to accelerate the discovery of advantageous mutants
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Figure 1: LGN is pre-trained with protein graphs of (perturbed) node and edge attributes, as well as
the nodes’ 3D positions with a multi-task learning strategy. The structural inputs are encoded with
EGC layers to extract translation invariant and rotation equivariant representations for each node on
individual graphs. The downstream tasks employs fully-connected layers to learn different labels,
where the log-odd-ratios of AA type predictions are used for suggesting top-ranked mutations.

[23, 37, 44]. Due to the scarcity of labeled protein data, researchers often pre-train on protein se-
quences or structures to learn protein encoding for downstream tasks, such as de novo protein design
[16] and higher-level structure prediction [9]. In the context of fitness prediction of mutation effect,
existing methods usually transform the problem to mini-de novo design, i.e., inferring a specific AA
type from its micro-environment, including the neighborhood AA types. Current state-of-the-art
protein sequence-based methods rely heavily on multiple sequence alignment (MSA) [11, 31, 32]
and protein language models [4, 9, 26, 33]. While MSA helps capture important evolutionary prop-
erties of the protein family, it multiplies the requirements of computing resources. The latter protein
language models derived from natural language processing (NLP) encode sequence semantics and
often need hundreds of GPU cards to train on billions of protein sequences. Meanwhile, an auto-
regressive inference process is usually needed along the entire protein sequence to score a mutation
on a single site, which further increases the inference cost [16, 21, 25, 27, 37]. More importantly,
when predicting the fitness of deep mutants, a majority models made a crude assumption that the
multiple-site mutation effect is a linear summation of the effect of each individual mutation, which
is incorrect in most cases [5, 19]. The ignored epistatic effects between different sites is potentially
a key factor hindering the acquisition of favorable high-order mutants in directed evolution [35, 36].

Mutation of AA sites also occurs in nature, and it is suggested by natural selection that only the
mutation that exhibits the best fitness and fits the environment survives. Altering AA types of a
protein in nature can be viewed as adding corruptions to the node features of the protein graph, and
denoising the graph makes a remedy to search for deep mutants with the best fitness. We hereby
model the protein mutation effect prediction as a denoising problem with equivariant graph neural
networks [38]. We generate protein graphs as an elegant structural description of the raw protein
that encodes the graph geometry. Each protein is treated as a graph with AAs being graph nodes
with the first-level information, such as AA types and spatial coordinates of Cα, being node features.
The learning scheme predicts the fitness of mutation effect on a protein with an arbitrary number of
mutant sites and provides efficient recommendations to discover favorable mutants. Compared to
existing zero-shot state-of-the-art methods for mutation effect predictions, the designed lightweight
equivariant graph neural network (LGN) stands out in three perspectives.

1. Implementing the multi-task learning strategy and biological priors enhance LGN’s generaliza-
tion ability. The former trains data-driven black-box encoders to describe a protein’s microenvi-
ronment, and the latter inserts domain knowledge towards practically meaningful representations.

2. LGN is efficient in training and inference. The spatial graph inputs portray the topological prop-
erties of proteins that circumvent data augmentation.Equivariant message passing layers of the
model, alternatively, provides a feature distillation unit with translation invariance and rotation
equivariance [2], which can precisely capture the micro-frame property in the protein graph ge-
ometry. Meanwhile, the downstream task allows outputting the probability of all the AAs at a
time that avoids iterative inference in auto-regression.
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3. The typical approach to calculating the higher-order mutation effect sums up log-odd-ratio scores
of the corresponding individual single-site mutants [25, 16]. However, the linear summation is
unsubstantiated, as the epistatic effect is known to be present that mutations of individual sites
are not independent [19, 5]. Instead, our scoring matrix does not need any of the independent-
mutation assumptions, and the output can take any number of mutation sites at a time.

2 Zero-shot Learning for Protein Recovery

2.1 Graph Representation of Protein Structure

We create a k-nearest neighbor (kNN) graph G = (V, E) to describe a given protein’s 3D structure
and molecular properties (See Appendix B). A node vi ∈ V represents an AA residue with node at-
tributes constituting biochemical and geometric properties. The former includes 20 one-hot encoded
amino acid types (Xaa), two scalars for each residue, i.e., solvent-accessible surface area (SASA)
and the standardized crystallographic B-factor, and 5 normalized surface-aware node features. The
geometric properties include the direction position Xpos ∈ R3 from 3D coordinates of the α-carbon
in a residue and the relative position of the amino acid in the protein chain (Xagl ∈ R4) by the
dihedral angles computed from the backbone atom positions. The edge attributes E ∈ R93 are
featured on the connected edges, including 15 inter-atomic distances, 12 local N-C positions, and
66-dimensional position encoding that records the relative position in the protein sequence.

2.2 Pre-training with Prior Domain Knowledge for Better Protein Fitness

Wild-type proteins suffer from random perturbations or mutations that not every AA site has the best
fitness. We pre-train LGN with a multitask learning strategy that removes the natural corruptions
and predicts key protein properties to help encode the microenvironment of recovered proteins.

AA Type Denoising We refine a node of AA type xaa to x̃aa by adding a Bernoulli noise, i.e.,

π(x̃aa|xaa) = pδ(x̃aa − xaa) + (1− p)M(n, π1, π2, ..., πn), (1)

where the confidence level p is a tunable parameter that controls the proportion of residues that are
‘noise-free’. The probability for the residue to become a particular type depends on the distribution
of the 20 types M(n, π1, π2, ..., πn), which involves prior knowledge in molecular biology. This
paper investigates three types of noise distribution, including random distribution, wild-type protein
distribution1, and BLOSUM-matrix based perturbation, which we shall introduce shortly.

Geometric Properties Denoising For continuous-valued features, such as 3D coordinates and
dihedral angles, an i.i.d Gaussian noise is introduced, e.g., x̃pos = xpos + σϵ,where ϵ ∼ N (0, I3).
Denoising the spatial features approximates the data-generating force field of molecules [50].

Bio-chemistry Properties Recovery Aside from the perturbed residues type and geometric prop-
erties to denoise, other auxiliary tasks are introduced to better retrain the hidden microenvironment
representation. Specifically, SASA is known to strongly influence AA type preferences, and B-
factors are associated with the conformations and mobility of the neighboring AA [21]. We thus
introduces inductive biases to the model by predicting these two properties in the downstream tasks.

Label Smoothing with Amino Acid Substitution Matrices Protein sequence alignments provide
important insights for understanding gene and protein functions. The similarity measurement of an
alignment of protein sequence reflects the favors of all possible exchanges of one amino acid with
another. We employ the BLOSUM substitution matrix [15] to account for the relative substitution
frequencies and chemical similarity of amino acids, which is derived from the statistics for every
conserved regions of protein families in BLOCKS database. As AA sites are more likely to be
mutated to the AA type within the block of high similarity scores in the BLOSUM table, we modify
our loss function that a mutation to an AA type with a higher similarity score accumulates a smaller
penalty than to the one with lower similarity score.

1The probability distribution is retrieved from AlphaFold [47] at https://alphafold.ebi.ac.uk/
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2.3 Protein Structure Representation with Equivariant GNNs

As the initial proteins are structured in the three-dimensional space, it is vital for the model to
predict the same binding complex no matter how the input proteins are positioned and oriented.
Rather than practicing expensive data augmentation strategies, we construct SE(3)-equivariant and
invariant neural layers for graph embedding. At the lth layer, an Equivariant Graph Convolution
(EGC) [38] inputs an n hidden node properties embedding of a graph H l =

{
hl
1, . . . ,h

l
n

}
and

the node coordinate embeddings X l
pos =

{
xl
1, . . . ,x

l
n

}
. The attributed edges are denoted as E =

{. . . , eij , . . . }. Concisely: H l+1
pos ,X

l+1 = EGC
[
H l,X l

pos,E
]
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1
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(
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(2)

The edge and node representations are propagated by ϕe, ϕh, such as multi-layer perceptrons
(MLPs). The additional operation projects the vector embedding mij to a scalar value. The EGC
layer preserves equivariance to rotations and translations on the set of 3D node coordinates Xpos
while simultaneously performing equivariance to permutations on V .

2.4 Model Overview

Our model is depicted in Figure 1. The downstream tasks include AA type classification, SASA and
B-factor prediction, 3D coordinates denoising, and dihedral angle denoising. The total loss reads

Ltotal = Laa + λ1Lsasa + λ2Lb-fac + λ3Lpos + λ4Lagl, (3)

where λi, i = 1, . . . , 4 are tunable hyper-parameters to balance different losses on auxiliary regres-
sion tasks. These losses are measured by mean squared error (MSE). The classification loss Laa for
AA type is measured by cross-entropy with label smoothing [43]. On an arbitrary node i,

Laa;i = (1−ε)
[
−

20∑
y=1

p(yaa|Xi,Ei) log qθ(ŷaa|Xi,Ei)
]
+ε

[
−

20∑
y=1

u(yaa|Xi,Ei) log qθ(ŷaa|Xi,Ei)
]
,

where p(yaa|Xi,Ei) denotes the true distribution and qθ(ŷaa|Xi,Ei) is the predicted label distribu-
tion following a softmax function. To improve the generalization and respect the prior biological
knowledge, we modify the true label distribution p(yaa|Xi,Ei) from the hard one-hot encoding to
(1 − ε)p(yaa|Xi,Ei) + εu(yaa|Xi,Ei) when ŷaa = yaa and εu(yaa|Xi,Ei) otherwise with some
tolerance factor ε. The distribution of u(y|xi) is defined by the BLOSUM substitution matrix.

3 Fitness of Mutation Effect Prediction

3.1 Experimental Setup

Our LGN is pre-trained on CATH v4.3.0 [29] with artificial noise to predict AA type, 3D coordi-
nates, dihedral angles, and chemical properties (SASA and B-factor). We will examine the model
performance with different output tasks. For instance, LGN (AA+SASA) indicates we predict AA
types and SASA in the output. The evaluation is conducted with deep mutational scanning (DMS)
datasets for zero-shot fitness of mutation prediction tasks. The model performance is compared
against popular state-of-the-art language models and structure-enhanced models, including MSA
TRANSFORMER [31], ESM-1V [25], and ESM-IF1 [16].

Lightweight Equivariant Graph Neural Networks (LGN) We generate protein graphs for the
sequences in CATH for pre-training LGN. We assign random perturbations to AA types and other
features in Section 2. At the validation step, the noises are fixed for stable and comparable mea-
surements. The main architecture constitutes 6 EGC layers following 1 fully-connected layer to
make predictions on the different learning tasks. On each node, the output is a vector representation
consisting of 20 probabilities of the masked AAs, 1 predicted SASA, 1 B-factors, and 4 dihedral
values (when applicable). The 3D-coordinates are derived directly from EGC outputs.
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Evaluation All the models are evaluated with deep mutational scanning (DMS) assays on 15 pro-
teins, including 9 proteins considering single-site mutant, and 6 proteins with deep mutants (see
Appendix C). We do not append artificial noises onto the test proteins, as we assume they are al-
ready noisy. The unmutated test proteins are sent to the pre-trained LGN model and use output the
log-odd-ratio in Equation 4 of the predicted probabilities of AA types for suggesting the deep mu-
tant ranks. The final performance on deep mutant prediction is evaluated on Spearman’s correlation
coefficient between the predicted and experimental scores on all the mutation combinations.

3.2 Results Analysis

Fitness of Deep Mutants Prediction We first evaluate the fitness of proteins’ mutation effects pre-
diction with zero-shot models, i.e., the fitness scores are inferred directly from a pre-trained model
without fine-tuning on a task-specific model. We visualize the overall performance comparison on
protein-wise Spearman correlation coefficients in Figure 2. LGN outperforms baseline methods in
deep mutant tasks and achieves at least comparable results in single-site mutant tests with an overall
0.5037 weighted average correlation by predicting AA types and SASA. In comparison, the scores
for MSA TRANSFORMER, ESM-1V, and ESM-IF1 are 0.3756, 0.3902, and 0.4270, respectively.

Figure 2: Per task Spearman’s correlation coefficients on the fitness of deep mutant effect prediction
on different protein datasets (denoted on the x-axis) with zero-shot models. The left 6 proteins
contain deep mutations, and the right 9 proteins only record shallow DMS.

Protein Recovery We next investigate the model’s fitness in the auxiliary learning tasks in pre-
dicting SASA, and B-factor. We examine the R2 of the predicted SASA and B-factor and the
ground-truth values on CATH and report the results in the middle and right subplots in Figure 3.
We fit the true value and the predicted value with linear regression. The estimated coefficients are
1.008 and 0.989 for B-factor and SASA, respectively. The p-value for both coefficients is 0.000. In
addition, Pearson’s correlation coefficients for the two variants are respectively 0.884 and 0.791.

Figure 3: Left: Comparison of Inference Efficiency. Middle & Right: Regression performance of
the pre-trained model on the perturbed proteins.

Inference Speed LGN consumes significantly fewer computational resources in training and in-
ference. We make a direct comparison of the model scale, inference time, and prediction perfor-
mance and visualize the results in the left subplot of Figure 3. The radius of each ball indicates the
number of network parameters of a model. Our model with different output variants (in yellow) can
achieve SOTA performance on Spearman’s correlation (y-axis) with the minimum inference time
(x-axis) while requiring less than 1% fitting parameters of ESM-IF1 and MSA TRANSFORMER’s.
The gap on ESM-1V is larger, which requires more than 400 times of parameters than ours.
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4 Conclusion

Designing directed evolution on proteins, especially with deep mutants for functional fitness, is of
enormous engineering and pharmaceutical importance. However, existing experimental methods are
economically costing, and in silico methods require significant computational resources. This paper
proposed a lightweight zero-shot model for mutant effect prediction on arbitrary numbers of AAs
by transferring the problem to denoising a protein graph. Our model is trained to recover AA types
and other important properties (e.g., B-factor, SASA, and the spatial position of Cα) from observed
noisy proteins. We employ translation invariant and rotation equivariant neural message passing
layers to extract the invariant geometry features of micro frames within and between AAs and thus
grasp rich information for efficiently learning protein function. The model achieves state-of-the-art
performance on PDB datasets in deep mutant tests with significantly fewer computational resources
than existing SOTA models.
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A Additional Related Work for in silico Protein Engineering

Protein Sequence and Structure Representation Due to the enormous experimental cost of mea-
suring protein structures, the number of known protein sequences is thousands of times larger than
protein structures [10, 16]. Meanwhile, the protein sequences representation is highly similar to
human language, which naturally promotes the fast development of natural language processing
(NLP), especially transformer-based methods for encoding protein sequences [7, 25, 28]. However,
the geometry of proteins also suggests higher-level structures and topological relationships that are
vital to protein function. Structure prediction of proteins always attracts great attention in the field
[6, 17, 3, 47]. The breakthrough progress in protein folding also enriches structured proteins. For
instance, [16] and [24] mixed experimentally-tested and ALPHAFOLD-predicted for model training,
which greatly eases the data shortage problem and achieves significant performance gain.

Structural Encoding for Protein Graphs According to the laws of physics, the atomic dynamics
do not changed no matter how a protein is translated or rotated from one place to another [13]. There-
fore, the inductive bias of symmetry should be incorporated into the design of protein structure-based
models. To this end, research work has been proposed to respect the spatial relationship of amino
acids [46, 37]. Such CNN-based methods aggregate the local structure of each residue and integrate
estimated local qualities into the whole protein properties. However, these methods neglect geomet-
ric equivariance, which can usually be captured by equivariant graph neural networks [12, 42].

Protein Representation As existing protein language models require high computational costs
and are difficult to train, finding an effective feature representation of protein data is important
for downstream tasks [45]. Contrastive learning and self-prediction [9], [51], and[16] used self-
supervised pre-training methods provide ways to extract a good representation for reducing com-
putational resources. Despite only applying classical representation learning methods on protein,
some researchers designed sophisticated methods. [20] proposed W⃗ -GNN variants efficiently inter-
act scalar-vector features. Besides, [41] introduced a multi-scale model HOLOPROT connecting
surface to structure and sequence.

Mutation Effect Prediction Multiple sequence alignment (MSA) is an essential ingredient for
many of the existing state-of-the-art methods to predict the effect of single amino acid substitutions
such as DEEPSEQUENCE [32], ALPHAFOLD [17] and MSA TRANSFORMER [31]. The MSA for
a protein sequence or domain captures meaningful information on evolutionary information of the
protein within its family at the cost of bringing severe limitations–not all proteins are alignable,
such as CDRs of antibody variable domains [40], and not all the alignments are deep enough to train
models sufficiently large to learn the complex interactions between residues. To deal with this issue,
ESM-1V [25] trains a zero-shot model on a large set of unaligned sequences to secure a scalable
and bias-free training procedure, and TRANCEPTION [27] leverages autoregressive predictions and
retrieval of homologous sequences at inference.

B From Protein to Graph Representation

B.1 Graph Representation

For a given protein, we create a kNN-Graph G = (V, E) to describe its 3D structure and molecular
properties. Here each node vi ∈ V represents an amino acid. To build edge connections, we first
define a symmetric adjacency matrix A with the kNN-graph, i.e., each node is connected to up to k
other nodes in the graph that has the smallest Euclidean distance over other nodes, and the distance
is smaller than a certain cutoff, i.e., 30Å. Consequently, if vi and vj are connected to each other, we
have eij ∈ E and Aij = Aji ̸= 0.

B.2 Node Features

The node attributes X ∈ R34 consist of chemical properties and geometric properties of amino
acids. The chemical properties include:

• residue type. The wild-type proteins constitute 20 types of amino acid residues. We hereby take
one-hot encoding on them and get the first Xaa ∈ R20 node attributes.
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• standardized B-factor. Crystallographic B-factor of the sum of the mainchain atoms describes
the attenuation of X-ray or neutron scattering caused by thermal motion. The B-factor of α-carbon
is a scalar value that is usually tested in laboratories to identify the rigidity, flexibility, and internal
motion of each residue. Since the value is sensitive to the experimental environment and proteins
in our dataset are measured by different laboratories, we take standardized B-factors along each
protein to fix the measurement bias. For a given protein, we find the mean and standard deviation
of the B-factors on each amino acid residue and normalize the raw B-factor values by deducting
the mean value and then dividing the standard deviation. Consequently, 95% B-factor values are
within the range between −1.8279 and 1.8081.

The geometric properties include:

• SASA. The solvent-accessible surface area measures the level of exposure of an amino acid to
solvent in a protein [14]. Since active sites of proteins are often located on their surfaces, SASA is
regarded as a crucial structural property. We calculate SASA by the ‘rolling ball’ algorithm from
its 3D structure. This algorithm uses a sphere (of solvent) of a particular radius to ‘probe’ the
surface of the molecule. 95% SASA values are within the range between −1.9902 and 1.9614.

• AA Position. We use the position of α-carbon in each residue to record their 3D position Xpos ∈
R3.

• surface-aware node features: we follow [12] and define 5 surface-aware node features by

ρi (xi;λ) =

∥∥∑
i′∈Ni

wi,i′,λ (xi − xi′)
∥∥∑

i′∈Ni
wi,i′,λ ∥xi − xi′∥

, where wi,i′,λ =
exp

(
−∥xi − xi′∥2 /λ

)
∑

j∈Ni
exp

(
−∥xi − xj∥2 /λ

) .
We generate 5 surface-aware features by setting λ ∈ {1, 2, 5, 10, 30}.

• dihedral angles. To present the relative position of the amino acid in the protein chain, we calcu-
late the trigonometric values of dihedral angles [20] {sin, cos} ◦ {ϕ, ψ} from the backbone atom
positions. For a specific vi of the ith amino acid in the protein sequence, the dihedral angles are
measured from 3D positions of Cαi−1, Ni, Cαi, Ni+1. The resulting feature Xagl ∈ R4. Note
that we remove the end node due to the missing angles.

B.3 Edge Attributes

The edge attributes E ∈ R92 are featured on the connected edges, including

• positional encoding represents each node vi by their sequence number si. Then, the sequence
distance between two nodes vi and vj is di,j = min(|si − sj |, 65). We calculate the threshold
number 64 by plotting the sequence distance distribution and then one-hot encoding of sequence
distance one-hot(di,j) ∈ R65 [21]. The last contact signal [20] describes if the two residues
contact in the space.

• inter-residue distances. We use Gaussian radial basis functions (RBF) of inter-residue distances
as additional edge attributes. For the edge between node i and node j, the distance reads

Erbf = exp

{
(∥xj − xi∥)2

2σ2
r

}
, r = 1, 2, . . . , R.

In aligned with [12], we set the scale parameter σr = {1.5k|k = 0, 1, 2, . . . , 14}. In total, there
are 15 distinct distance-based features on each edge.

• local frame orientation is calculated from heavy atoms positions in these two residues. It rep-
resents local fine-grained relations between amino acids and the rigid property of how these two
residues interact with each other.

C Deep Mutational Scanning Benchmark

In order to validate the performance of our method on zero-shot mutant effect prediction, we test the
pre-trained methods on a diverse set of proteins from deep mutational scanning (DMS) experiments,
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Figure 4: Rank distribution on higher-order mutants. Generally, mutate on more sites would result
in a higher score, i.e., a smaller rank value.

which provide a systematic survey of the mutational landscape of proteins from wet laboratory test
and is usually used to benchmark computational predictors for the effects of mutations.

This section introduces the main aspects that help better understand the task, including the test
dataset description, the pre-processing steps, as well as the evaluation details.

C.1 Dataset Glossary

On the mutant effect prediction task, we evaluate model performance on 199, 819 records from 15
in vivo and in vitro DMS experiments that cover 1-site to 28-sites mutant scores, where 6 of them
only mutant on single-sites, and 15 of them have both single-sites and higher-order sites DMS.
Specifically, we collect all the single-site DMS (BG STRSQ, BLAT ECOLX, CALM1 HUMAN,
HG FLU, KKA2 KLEPN, MTH3 HAEAESTABILIZED, PA FLU, PTEN HUMAN, and
RASH HUMAN) and two proteins with deep mutants (F7YBW8 and F7YBW8 MESOW) from
[32]’s work; GFP by [36]; CAPSD AAV2S, DLG4 HUMAN, and GRB2 HUMAN in [27].

Essentially, the dataset provides these protein sequences, mutant actions, and fitness scores on differ-
ent mutants. Due to the lack of experimentally tested structures, we use ALPHAFOLD [17] to predict
their structures. Since we only focus on AA type change mutant actions, there are only 0.265% (470
out of 200, 349) mutant actions changing the length of proteins, so we removed them. The fitness
scores reflect measurable features of the protein with respect to certain mutations, such as enzyme
function, growth rate, peptide binding, viral replication, and protein stability. A higher fitness score
implies that the mutant protein is better off after the adjustment of some sidechain types. The graph
construction method and feature attraction process are exactly the same as we did on training dataset,
except that for the convenience of later correlation computation, we append the mutant actions and
fitness scores as its graph features. Table 1 summarizes the characterization of each mutational scan-
ning dataset, including the protein length and the number of scores they recorded in different orders
of mutations.

We also investigate the choice of mutant order to the test score in DMS datasets. As we are more
interested in the rank of mutants than their absolute scores, we rank the score values in each of the
proteins and make boxplots on them. In other words, to renovate a given protein to perform better
on a certain property, the directed evolution with a higher score (or equivalently a higher rank or
smaller rank score) is preferred. As shown in Figure 4, the proteins that were validated in this work
generally present a negative relationship between the mutant order and rank score. That is, a higher
mutant order results in a smaller rank score, i.e., a higher rank.

C.2 Test Task

We evaluate performance by comparing the experimental ground truth fitness score with the pre-
dicted score for each deep mutational scan using Spearman’s rank correlation.

For a specific mutation of interest, we score it by the log odds ratio from the probabilities of the
sidechain type classification task with respect to wild-type probabilities [25, 22]. When the higher-
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Table 1: Summary of the Higher-Order Mutant Test Dataset.

# mutant(s) CAPSD AAV2S GFP F7YBW8 F7YBW8 MESOW DLG4 HUMAN GRB2 HUMAN

# node 734 235 92 92 723 216

1 1, 064 1, 084 37 37 1, 280 1, 034
2 21, 666 12, 777 499 499 5, 696 62, 332
3 13, 812 12336 2798 2798
4 13, 292 9, 387 5, 858 5, 858
5 12, 596 6, 825
6 10, 792 4, 298
7 1, 716 2, 526
8 1, 478 1, 364
9 1, 302 627
10 1, 166 299
11 890 118
12 814 43
13 736 23
14 656 5
15 572 2
16 472
17 406
18 318
19 238
20 186
21 148
22 112
23 86
24 58
25 34
26 24
27 16
28 6

sum 84656 51714 9192 9192 6976 63366

order (double-site or more sites) mutations exist in a single protein sequence, we assume an additive
model over the mutated positions. To be specific, for T -site mutants, the fitness score reads∑

t∈T

log p(xaa = x̂mutant
aa )− log p(xaa = xwild

aa ), (4)

where x̂mutant
aa and xwild

aa denote the predicted sidechain type, and the wild-type sidechain type, re-
spectively.

In the main experiments, we validate the prediction performance with different problem setups.
Depending on the different degrees of freedom on the mutation, we consider respectively arbitrary
order of mutants (single-site or multiple-sites), higher-order mutants (multiple-sites only), or fixed-
order mutants (n-sites with a specific order n). For instance, when investigating the prediction
performance of higher-order mutants on a given protein, we first make predictions on all the DMS
that has two or more mutant sites. The Spearman correlation coefficient is then calculated with the
predicted and experimental score sequences. Alternatively, if the number of mutations is specified
to 3-sites, only DMS containing 3 mutations will be included for scoring.

D Model Comparison

In Table 2, we compare the model size and the required resources with the baseline methods: MSA
TRANSFORMER [31], ESM-1V [25], and ESM-IF1 [16]. To be specific, the attributes for training
the model are provided by the authors, and the inference speed and memory are tested by us. As
each protein requires independent inference progress, we hereby take GFP as an example protein
sample. The protein constitutes 236 amino acid residues, and it has over 50, 000 mutant records.
(see Table 1 for more details). Note that:

1. the 2, 687 input token length only refers to the maximum protein length we used during training.
In fact, the model itself can process large protein graphs containing over tens of thousands
of amino acids.
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2. the training speed and required resources for MSA TRANSFORMER are retrieved from [25]. The
original work by [31] only reports that they used 32×V100 GPUs for training, without revealing
the training time.

Table 2: Characteristics of different models used in the experiment.

model MSA TRANSFORMER ESM-1V ESM-IF1 LGN(ours)

input sequence sequence sequence+structure structure
training dataset Uniref50 Uniref90 CATH+AF2 CATH

(2018-03) (2020-03) v4.3.0
training size 45M 98M 12M 0.03M
max. input token 1, 024 1, 024 1, 024 2, 687

# parameters 100M 650M 142M 1.5M
# layers 12 - 20 6
# head 12 - 8 -
# hid. dim. - - 512− 2, 048 512
speed (training day) 132 6 653 0.17
resource (train) 128×V100 64×V100 32×V100 1×3090

inference speed (second) (GFP) > 500 74.84 101.99 25.28

E Training Details

E.1 Dataset for Pre-training

CATH [29] prepares a diverse set of proteins with experimentally determined 3D structures from
the Protein Data Bank (PDB) and, where applicable, splits them into their consecutive polypeptide
chains. We employ a non-redundant subset of CATH v4.3.0 domains for pre-training the model. No
pairs of domains in the selected protein entities have more than 40% sequence identity over 60% of
the overlap (over the longer sequence in the protein pair of comparison).

We then transform each sample protein sequence of the revised CATH dataset into a protein graph,
as is defined in Appendix B. We summarize the main properties of the CATH dataset in the first
three lines of Table 3, where we use s40 to denote the sequence identity, and k5, k10 and k20 to
represent the number of neighbors in generating the kNN-graphs. For the total number of 31, 848
protein graphs of 150 nodes on average, we randomly pick 500 graphs for validation and leave
the remaining for model fitting. Similar progress of graph generation is adopted to the test protein
sequences (including 9 single-site DMS proteins and 6 multiple-sites DMS proteins), which statistics
are attached in the table as well.

E.2 Model Setup

This section discloses the full experimental details, including data preparation, access to model im-
plementation, and their tuning space. All the experiments are conducted with PyTorch on NVIDIA ®

RTX 3090 GPU with 10,496 CUDA cores and 24GB memory on an HPC cluster. The models are
programmed on PyTorch-Geometric (version 2.0.1) and PyTorch (version 1.7.0).

Program We have uploaded our model to an anonymous GitHub page at https://anonymous.
4open.science/r/mutation-2486 In addition, we take the official implementation of the base-
line models from the repository:

• MSA TRANSFORMER: https://github.com/facebookresearch/esm

• ESM-1V: https://github.com/facebookresearch/esm

• ESM-IF1: https://github.com/facebookresearch/esm

The EGC layers are implemented with the official PyTorch implementation at https://github.
com/lucidrains/egnn-pytorch.
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Table 3: Summary of the generated graph datasets by CATH for training dataset and Mutant for
the test dataset. We consider three variants of graphs by CATH with three different ks (i.e., k =
5, 10, 20) for generating the kNN-graphs. For the test dataset, we report the statistics for the 8
proteins with higher-order mutants.

# feature # node # edge
dataset # graph node edge min. max. avg. avg. D min. max. avg.

CATH-s40-k10 31, 848 34 92 8 1, 201 150.92 9.96 56 12, 004 1, 503.62
CATH-s40-k5 31, 848 34 92 8 1, 201 150.92 4.98 38 6, 004 751.99
CATH-s40-k20 31, 848 34 92 8 1, 201 150.92 19.92 56 24, 009 3, 006.31

Mutant-Nsite-k10 15 34 92 92 734 365.73 9.99 916 7, 333 3, 652.27
Mutant-Nsite-k5 15 34 92 92 734 365.73 4.99 457 3, 668 1, 826.27
Mutant-Nsite-k20 15 34 92 92 734 365.73 19.94 1, 830 14, 656 7, 293.93

Hyper-parameters Setting The model architecture stacks with 6 EGC layers and a linear clas-
sifier to make predictions. We use ADAM [18] optimizer to optimize our model without warmup
period. We train our model for 300 epochs with the initial learning rate 0.001 and weight decay
0.01. After 150 epochs, the learning rate decays to 0.0001. We use gradient clipping equal to 4 in
order to stabilize the training procedure.

F Prior Biological Knowledge

This section investigates the influence of adopting prior biological knowledge, including the choice
of noise distribution in perturbing the sidechain type, and the implementation of label smoothing.
We analyze the effect of these designs with the experimental results.

For the distribution of sidechain type corruptions, we consider three particular types of noise, includ-
ing random perturbation, wild-type-based perturbation, and BLOSUM-based perturbation. The re-
sults are reported in Table 4. Here we fix the confidence level p = 0.6 and the penalty weight
λ = 0.2 for all the losses, except for dihedral loss, for which λ is set to 0.5. The influence of
selecting different ps will be discussed in the next section.

Table 4: Test Performance with the three different sidechain perturbation types (random, wild-type-
based, and BLOSUM substitution matrix-based) on the fitness of mutant effect prediction. The
average Spearman’s rank coefficients are reported on both single-site and multiple-sites mutations.

RANDOM WILD-TYPE

Learning Task single multi single multi

AA 0.1551 0.3350 0.1482 0.3357
AA+SASA 0.2734 0.4909 0.2747 0.5037
AA+SASA+B-factor 0.2705 0.4480 0.2803 0.4593
AA+SASA+coordinates 0.2445 0.4245 0.2364 0.4290
AA+SASA+B-factor+coordinates+dihedral 0.1752 0.3657 0.1709 0.3345

G Effect of the Confidence Level

This section discusses the choice of the confidence level p in Equation 1, i.e., a tunable parameter
that controls the proportion of residues that are ‘noise-free’. We begin with demonstrating the noise
level of the sidechain type by visualizing the perturbed amino acid residues amount. While this
value can be determined by humans which reflects their belief in the quality of wild-type proteins,
this research focuses on data-driven decisions, i.e., we conduct experiments on different levels of ps
to guide an empirical choice of it.
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Table 5: Average Spearman’s rank coefficients at different confidence levels p with different types
of probability distribution on single-site mutant effect prediction. We fix the number of EGC layers
to 6 and λ = 0.2 for all the losses except for dihedral, which λ we set to 0.5.

Learning Task 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
R

A
N

D
O

M

AA 0.1391 0.1809 0.1816 0.1551 0.1445 0.1557 0.1517 0.1219
AA+SASA 0.2479 0.2603 0.2869 0.2734 0.2933 0.2840 0.2902 0.1354
AA+SASA+B-factor 0.2745 0.2679 0.2790 0.2705 0.2767 0.2642 0.2755 0.1321
AA+SASA+coordinates 0.2458 0.2493 0.2239 0.2445 0.2251 0.2507 0.2045 0.1778
AA+SASA+B-factor+coordinates+dihedral 0.1820 0.1528 0.1594 0.1752 0.1620 0.1798 0.1515 0.1312

W
IL

D
-T

Y
P

E AA 0.1715 0.1600 0.1597 0.1842 0.1745 0.1674 0.1679 0.1406
AA+SASA 0.2663 0.2660 0.2662 0.2747 0.2797 0.2894 0.2897 0.1382
AA+SASA+B-factor 0.2708 0.2717 0.2519 0.2803 0.2792 0.2673 0.2776 0.1351
AA+SASA+coordinates 0.2539 0.2107 0.2595 0.2364 0.2474 0.2230 0.2628 0.1818
AA+SASA+B-factor+coordinates+dihedral 0.1771 0.1709 0.1917 0.1709 0.1937 0.1495 0.1769 0.1566

G.1 Noisy Ratio on the AA Type

Figure 5-6 demonstrates different perturbation levels on the AA type with wild-type noises and
BLOSUM matrix. In Figure 5, each of the bar charts visualizes the probability distribution of
the perturbed amino acid residues in an epoch. For instance, p = 1 indicates the maximum level
of confidence in the quality of wild-type proteins, resulting in no perturbations in the input amino
acid residues. In contrast, p = 0.1 gives a total number of 90, 265 corruptions in a training epoch,
where 998 of them become Cysteine (abbreviated as C), and 9, 194 of them are corrupted to Leucine
(abbreviated as L).

Figure 6 demonstrates the modified BLOSUM matrix with different temperatures for defining the la-
bel smoothing and perturbation probability. A higher temperature is agnostic to a higher confidence
level p, resulting in a more diagonal substitution matrix. We report the deep-mutant prediction per-
formance over the 6 multi-site mutant proteins with p = 0.6. The output task predicts AA type,
SASA, and B-factor with all the λs fixed to 0.2. We report the average Spearman’s correlation over
5 repetitive runs by applying the BLOSUM matrix to label smoothing and the distribution of noisy
input AA types. The results are reported in the titles of respective subfigures.

G.2 Influence of p on the Pre-trained Model

As mentioned before, the choice of p can be determined by prior knowledge regarding the quality
of wild-type proteins. Alternatively, this value can be considered as a data-driven hyper-parameter
to be optimized during the model training. We hereby follow the second path and search for the
optimal p ∈ {0.3, 0.4, . . . , 0.9, 1}. Here we exclude extremely small ps to avoid drastic perturbation
rates. The influence on the different choices on ps are validated with different learning tasks (i.e., we
consider different outputs) and with different types of perturbation distribution (i.e., random pertur-
bation, wild-type perturbation, and BLOSUM matrix-based perturbation). We report the results of
average Spearman’s ρ on different variants in Table 5 (single-site mutants) and Table 6 (higher-order
mutants). In general, a moderate p between 0.3 and 0.6 best suits the majority selection of learning
modules and noise distribution. Based on the overall performance, we suggest p = 0.6 as the default
value of the confidence level.

H Design of the Multi-task Learning Problem

This section discusses different choices on the prediction tasks. Recall in Section 2 we introduce five
learning tasks on sidechain type prediction, SASA and b-factor regression, 3d-coordinate recovery,
and dihedral angle prediction. Here we aim at answering two questions:

1. which learning targets are preferred over others?

2. which λ(s) should be set as the default value(s)?
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Figure 5: Perturbed label distribution of the training protein graphs at different confidence levels p.
A higher confidence level results in fewer AAs to observe noisy labels.

Figure 6: Perturbed label distribution of the training protein graphs at different temperatures. As the
BLOSUM matrix has been applied to perturbation distribution and label smoothing of AA types,
we report the average Spearman’s correlation on the titles of sub-figures over 5 repetitive runs.

Table 6: Average Spearman’s rank coefficients at different confidence levels p with different types
of probability distribution on higher-order mutant effect prediction. We fix the number of EGC
layers to 6 and λ = 0.2 for all the losses except for dihedral, which λ we set to 0.5.

Learning Task 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
A

N
D

O
M

AA 0.3145 0.3435 0.3709 0.3350 0.3266 0.3264 0.3135 0.2521
AA+SASA 0.5023 0.4285 0.4986 0.4909 0.4749 0.4686 0.4434 0.2363
AA+SASA+B-factor 0.4707 0.4724 0.4741 0.4480 0.4372 0.4139 0.4369 0.2810
AA+SASA+coordinates 0.4355 0.4763 0.3962 0.4245 0.4405 0.4078 0.3842 0.2809
AA+SASA+B-factor+coordinates+dihedral 0.3554 0.3293 0.3087 0.3657 0.2871 0.3070 0.3702 0.2420

W
IL

D
-T

Y
P

E AA 0.3184 0.3189 0.3357 0.3357 0.3557 0.3343 0.3189 0.2482
AA+SASA 0.4717 0.4548 0.4777 0.5037 0.4578 0.4763 0.4740 0.2716
AA+SASA+B-factor 0.4627 0.4704 0.4426 0.4593 0.4678 0.4527 0.4498 0.2512
AA+SASA+coordinates 0.4351 0.3839 0.4648 0.4290 0.4536 0.4327 0.4311 0.2851
AA+SASA+B-factor+coordinates+dihedral 0.4151 0.3932 0.3596 0.3345 0.3432 0.2974 0.2937 0.2673
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Figure 7: Average Performance on different Choices of ps (left) and λs (right) with different variants
of auxiliary tasks.

H.1 Choices on the Predictions

To answer the first question, we revisit the results in the previous sections. To enable a perceptual
presentation, we visualize their performance in Figure 7 and Table 6-7 in the main table with differ-
ent ps and λs and compare them with baseline methods. As a default choice, predicting AA type,
SASA and B-factor help generate representative protein graph embedding for further tasks.

H.2 Choices of Loss Weight

We next detail the influence of the loss function to the overall model performance by selecting
different λs. For simplicity, we let λ1 = λ2 = λ3 ∈ {0.05, 0.1, 0.2, 0.5, 0.8, 5, 10}. Similar to
before, we fix λ4 = 0.5 and p = 0.6. The probability distribution on the sidechain type uses the
wild-type distribution. The weighted average performance on single-site and multiple-site mutant
effect predictions are reported in Table 7.

Table 7: Test Performance of (model) with different λs on the mutant effect prediction.

Learning Task 0.05 0.1 0.2 0.5 0.8 5 10

si
ng

le

AA 0.1719 0.1752 0.1621 0.1644 0.1648 0.1714 0.1554
AA+SASA 0.2953 0.2910 0.3023 0.2834 0.3002 0.2782 0.2709
AA+SASA+B-factor 0.2975 0.3084 0.3032 0.2884 0.2744 0.2622 0.2329
AA+SASA+coordinates 0.2654 0.2788 0.2604 0.2511 0.2785 0.2260 0.2079
AA+SASA+B-factor+coordinates+dihedral 0.1844 0.1880 0.1366 0.1825 0.1641 0.1556 0.1933

m
ul

tip
le

AA 0.3095 0.3430 0.3441 0.3324 0.3326 0.3326 0.3147
AA+SASA 0.4738 0.4731 0.4678 0.4541 0.4010 0.4500 0.4022
AA+SASA+B-factor 0.4648 0.5149 0.4501 0.4270 0.4811 0.4421 0.4149
AA+SASA+coordinates 0.4748 0.4782 0.4398 0.4550 0.4545 0.3980 0.3935
AA+SASA+B-factor+coordinates+dihedral 0.3326 0.3820 0.3785 0.3465 0.3361 0.3260 0.3396

H.3 Visualized Summary

In detail, Figure 7 visualizes a selection of model performance on the Spearman’s correlation with
variant ps and λs with wild-type noise distribution.

While the choice of p can be determined by prior knowledge regarding the quality of wild-type
proteins, here we treat p as a data-driven hyper-parameter to be optimized during the model training.
We exclude extremely small ps to avoid drastic perturbation rates and search for the optimal p ∈
{0.3, 0.4, . . . , 0.9, 1}. The different choices on ps are validated with different learning tasks on the
left side of Figure 7 for higher-order mutants. In general, a moderate p between 0.3 and 0.6 best suits
the majority selection of learning modules and noise distribution. Based on the overall performance,
we suggest p = 0.6 as the default value of the confidence level. More results on different types of
perturbation noise and proteins are prepared in Table 6.

We also investigate a wide range of the choices of λs. For simplicity, we let λ1 = λ2 = λ3 ∈
{0.05, 0.1, 0.2, 0.5, 0.8, 5, 10} and fix λ4 = 0.5. All the results are conducted under the recom-
mended p = 0.6 with wild-type noise. We report the average performance on deep mutants in
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the right plot of Figure 7, which demonstrates a relatively flat and steady trend with a mild peak at
λ = 0.2, 0.5. We supplement additional experimental results in Table 7 with different model setups.
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