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Abstract

Graph convolutions have been a pivotal element in learning graph representations.
However, recursively aggregating neighboring information with graph convolutions
leads to indistinguishable node features in deep layers, which is known as the over-
smoothing issue. The performance of graph neural networks decays fast as the
number of stacked layers increases, and the Dirichlet energy associated with the
graph decreases to zero as well. In this work, we introduce a framelet system into
the analysis of Dirichlet energy and take a multi-scale perspective to leverage the
Dirichlet energy and alleviate the over-smoothing issue. Specifically, we develop
a Framelet Augmentation strategy by adjusting the update rules with positive
and negative increments for low-pass and high-passes respectively. Based on that,
we design the Energy Enhanced Convolution (EEConv), which is an effective
and practical operation that is proved to strictly enhance Dirichlet energy. From
a message-passing perspective, EEConv inherits multi-hop aggregation property
from the framelet transform and takes into account all hops in the multi-scale
representation, which benefits the node classification tasks over heterophilous
graphs. Experiments show that deep GNNs with EEConv achieve state-of-the-art
performance over various node classification datasets, especially for heterophilous
graphs, while also lifting the Dirichlet energy as the network goes deeper.

1 Introduction
Many types of real-world data, such as social networks, recommendation systems, chemical molecules,
contain indispensable relational information, and thus can be naturally represented as a graph. Re-
cently, Graph Neural Networks (GNNs) [1–3] have achieved a myriad of eye-catching performances
in multiple applications on graph-structured data. However, for traditional GCNs or other extensions
of GNNs, there is a key limitation: the over-smoothing phenomenon, which means that the increase
of the model’s depth gives rise to the decay of predictive performance.

There are mainly two types of approaches to enable deep graph neural networks. One is from
empirical techniques in graph convolutional layers, like residual connections [4, 5], weight normal-
ization [6], edge dropout [7], etc. The other controls Dirichlet energy to alleviate the over-smoothing
phenomenon [8]. Dirichlet energy is a metric to measure the average distance between connected
nodes in the feature space, however, rapidly converges to zero [9, 10] as the number of stacked
layers increases. From a spectral perspective, recent works [11–13] discover that graph convolution
works well for the case where the low-frequency components are sufficient for prediction, but fails
in the scenarios where the high-frequency information is also necessary, which often happens in
real-world heterophilous graphs. The failure is due to the denoising effect of graph convolution layers.
The unsatisfying performance of GNNs usually stems from insufficient attention to high-frequency
components, especially for heterophilous graphs. Therefore, the impact and the potential advantage
of multi-scale representation on the over-smoothing issue deserve further exploration.
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Figure 1: An illustration of the proposed Energy Enhanced Convolution. We first conduct framelet
decomposition on the original graph signal (Eq. 1) and obtain one low-pass and two high-passes. The
Framelet Augmentation is applied by adding or subtracting an increment for low and high-passes
(Eq. 8). The total Dirichlet energy will be lifted in this process. A framelet reconstruction operator
follows to resize the framelet coefficients to the original size.

Most existing methods that target over-smoothing only consider graph information in the spatial
domain and do not characterize the asymptotic behaviors of different frequency components and
their different contributions to over-smoothing problem. Besides, empirical techniques lack a
theoretical guarantee of the stability or enhancement of the Dirichlet energy. Compared with the
previous method that alleviates over-smoothing by controlling the Dirichlet energy, we are the first to
theoretically guarantee the enhancement of Dirichlet energy. Furthermore, we emphasize a multi-
scale representation for graph-structured data [14–16], to study asymptotic behaviors of different
frequency components.

Present Work. We materialize this idea in a novel Energy Enhanced Convolution (EEConv) that
can be repeatedly stacked to construct a more robust and deeper GNN architecture by lifting the
Dirichlet energy to a higher and steady value. Figure 1 illustrates the computational flow of an
EEConv layer. We first decompose the graph signal into framelet coefficients (Section 2), where
the global graph structure and all-hop information are embedded by the framelet transform. Then,
Framelet Augmentation is applied by modifying the corresponding diagonals of the adjacency
matrices for low-pass and high-passes respectively (Section 3). Meanwhile, the Dirichlet energy
associated with the graph is enhanced in this operation. Finally, the framelet coefficients will be
reconstructed back to the original size and fed to the non-linear activation. Our proposed framelet
augmentation strategy can be easily extended to other message-passing models with Laplacian-based
propagation rules, such as heat diffusion on manifolds. We discuss possible extensions in Section 5.

We utilize the different roles and contributions of frequency components in graph prediction tasks to
control Dirichlet energy. Low-frequency signals can make the representations of adjacent nodes simi-
lar and closer, while high-frequency signals make them more distant and distinguishable. Intuitively,
we let the model reduce the focus to the low-pass information of the node itself, while increasing the
focus to the high-pass components of the neighboring information. Moreover, the decomposability of
Dirichlet energy provides us with the feasibility of regulating the energy ratio of each pass. It can be
proved that Dirichlet energy is strictly enhanced with the framelet augmentation strategy.

To this end, the contributions of this work are threefold: (1) We perform a systematic analysis of the
Dirichlet energy based on the framelet system and propose a novel Framelet Augmentation strategy
to enhance the Dirichlet energy. (2) We theoretically prove the different asymptotic behaviors and
Dirichlet energy of low-pass and high-passes during the feature propagation, and validate them
through sufficient experiments. (3) We carry out experiments to verify the effectiveness of Framelet
Augmentation and demonstrate that the proposed approach achieves outstanding performance on
real-world node classification tasks, especially for heterophilous graphs.
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Figure 2: Visualization of framelet coefficients for node classification task on Cora. From left to
right we show the original graph, low-pass, high-pass 1 and high-pass 2 respectively. The projected
value is the first principal component of the high-dimensional features.

2 Background and Preliminaries
2.1 Framelet Analysis on Graph

Wavelet analysis on manifolds provides a powerful multi-scale representation tool for geometric
deep learning. In this paper, we mainly focus on tight framelets on a graph [15, 17, 18], which is a
multi-scale affine system. For a graph G withN nodes and graph Laplacian ∆, let U = [u1, · · · ,uN ]
be the matrix of eigenvectors of ∆, whose transpose is used for the Graph Fourier Transform, and
Λ = diag(λ1, · · · , λN ) be the diagonal matrix of the eigenvalues. Framelets over the graph is
generated by a set of scaling functions Φ = {α;β(1), · · · , β(n)} ⊂ L1(R) associated with a filter
bank η = {a; b(1), · · · b(n)}, satisfying α̂(2ξ) = â(ξ)α̂(ξ) and β̂(r)(2ξ) = b̂(r)(ξ)α̂(ξ), for any ξ ∈
R, where ĥ(ξ) denotes the Fourier transform of h, which is defined by ĥ(ξ) :=

∑
k∈Z h(k)e

−2πikξ.
n denotes the number of high-pass filters. φj,p(v) and ψr

j,p(v) are the low-pass and high-pass
framelets at node v associated to node p for scale level j ∈ {1, · · · , J} respectively, which is defined
by

φj,p(v) =

N∑
l=1

α̂

(
λl
2j

)
ul(p)ul(v); ψr

j,p(v) =

N∑
l=1

β̂(n)

(
λl
2j

)
ul(p)ul(v), r = 1, . . . , n.

Therefore, the framelet transforms actually take into account the global information and all the hops
of the graph into its multi-scale representations. The low-pass and high-pass framelets distill the
coarse-grained and fine-grained information of graph signals.

The framelet coefficients V0,W r
j ∈ RN×d are defined as the inner-product of the framelet and the

graph signal X ∈ RN×d, where d denotes the feature dimension. The size of V0,W r
j is the same as

the graph signal (node features) X .

V0 = ⟨φ0,·, X⟩ = U⊤α̂
(Λ
2

)
UX and W r

j =
〈
ψr
j,·, X

〉
= U⊤β̂(r)

( Λ

2j+1

)
UX, (1)

Let Wr,j denote the decomposition operators given by V0 = W0,JX and W r
j = Wr,jX . Then

according to Eq. 1, we obtain the framelet transform matrices for decomposition:

W0,J = U⊤â(2−K+J−1Λ) · · · â(2−KΛ)U := U⊤Λ0,JU,

Wr,1 = U⊤b̂(r)(2−KΛ)U := U⊤Λr,1U,

Wr,j = U⊤b̂(r)(2−K+j−1Λ)â(2−K+j−2Λ) · · · â(2−KΛ)U := U⊤Λr,jU.

(2)

Here, K is a sufficiently large value such that the Laplacian’s biggest eigenvalue λmax ≤ 2Kπ.
We use Haar-type filters, a classic multi-scale system with acceptable computational cost in our
implementation. With Haar-type filters, we have α̂(Λ2 ) = cos(Λ8 )cos( Λ

16 ), β̂(
Λ
2 ) = sin(Λ8 )cos( Λ

16 )

and β̂(Λ4 ) = sin( Λ
16 ) to construct a framelet system of 2 scale level (j = 1, 2) and 1 high-pass filter

(r = 1). Thus, we obtain one low-pass (V0) and two high-passes (W 1
1 ,W

1
2 ). Figure 2 shows the

scattering plots of the principal component of framelet coefficients on the Cora dataset. We can
observe that the low-pass provides an approximation of the original graph signal while the high-passes
distill the detail information.
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Energy Gap. The magnitude of the high-passes coefficients is usually much smaller than the
low-pass. With L2 norm as the energy of signals, we can prove that the sum of high-pass energies is
less than that of the low-pass, or precisely, ∥W 1

1 ∥2 + ∥W 1
2 ∥2 ≤ ∥V0∥2. See the proof and L2 norm

statistical results in Figure 5 in Appendix A.2. This motivates us to consider the energy imbalance
between low and high-passes.

2.2 Dirichlet Energy

Dirichlet Energy measures the degree of over-smoothing phenomenon, by calculating the average
representation distance between connected nodes. Over-smoothing representations will produce a
small value of Dirichlet Energy and cause the decay of the model’s prediction performance. Let
Ã = A+ IN be the adjacency matrix of the original graph with self-loops. D̃ is the diagonal degree
matrix associated with Ã. With the augmented adjacency matrix Â = D̃− 1

2 ÃD̃− 1
2 , augmented

normalized Laplacian [19] of the input graph is defined as ∆̃ = IN − Â = IN − D̃− 1
2 ÃD̃− 1

2 .
Definition 1 Dirichlet energy E(X) of the signal X ∈ RN×1 on the graph G(V,E) is defined as

E(X) = X⊤∆̃X =
1

2

∑
(i,j)∈E

wij

(
Xi√
1 + di

− Xj√
1 + dj

)2

,

where ∆̃ is the augmented normalized Laplacian. Similarly, for multiple channels the Dirichlet
energy is defined as trace(X⊤∆̃X).

For the propagation rule of GCN [1]: H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)), where H(l) is the feature
representations of the l-th layer, W (l) is the l-th layer weight matrix, the following Theorem 1 [10]
implies the convergent behavior of node features. The subspace that node features converge to is
formulated with the bases of the eigenspace of graph Laplacian [9, 10]. We first clarify the notations
for Theorem 1. Let K be the null space of the graph laplacian ∆̃. The subspace M is defined by
M = K ⊗ Rd =

{∑M
m=1 em ⊗ wm|wm ∈ Rd; em ∈ K

}
⊆ RN×d. d is the feature dimension

of the graph signal. The distance between graph signal X ∈ RN×d and subspace M is defined as
dM(X) = infm∈M{∥X −m∥F }, where F denotes the Frobenius norm.
Theorem 1 [10] For GCN models, we have that dM(H(l+1)) ≤ slλdM(H(l)), where λ is the
second largest eigenvalue of the augmented adjacency matrix Â and sl is the supremum of all
singular values of the l-th layer weight matrix W (l).

The convergence rate of the distance between node features and the subspace is positively related
to the eigenvalues of the Â [20], generating the consistent feature representations of nodes. over-
smoothing is especially detrimental in heterophilous graph tasks, where adjacent nodes are more
likely to have different labels. Thus, too similar feature representations between connected nodes
(but most likely with different labels) lead to the failure of GNNs in these tasks.

3 Framelet Augmentation Strategy
3.1 Framelet Convolution

With the above Laplacian-based framelet transforms, we develop the framelet (graph) convolution
similar to the graph convolution (GCNConv [1]) as follows:

H
(l+1)
r,j = σ(D̃− 1

2 ÃD̃− 1
2Wr,jH

(l)W
(l)
r,j ) H(l+1) = V(H(l+1)

0,J ;H
(l+1)
1,1 , · · · , H(l+1)

n,J ), (3)

where (r, j) ∈ {(r, j)|r = 1, · · · , n; j = 1, · · · , J} ∪ {(0, J)}, W (l)
r,j is the trainable weight matrix

corresponding to the l-th layer and the (r, j)-th pass, V is the framelet reconstruction operator given
by XJ = V(V0,W1,1, · · · ,Wn,J) = W⋆

0,JV0 +
∑n

r=1

∑J
j=1 W⋆

r,jWr,j , where the superscript ⋆
indicates the conjugate transpose of the matrix. We can observe that V reconstructs the low-pass and
high-pass coefficients back to the original size.

Compared with the existing framelet graph model, UFG [15], which is a filter learning method
in the frequency domain, our framelet graph convolution inherits the message-passing pattern and
generalizes that to multi-scales representation systems.
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3.2 Framelet Dirichlet Energy

Based on Section 2, we define framelet Dirichlet energy for low-pass and high-passes signals.

E0,J(X) = (W0,JX)⊤∆̃(W0,JX); Er,j(X) = (Wr,jX)⊤∆̃(Wr,jX). (4)

The total framelet Dirichlet energy is then defined as the sum of Dirichlet energy in each pass:

Etotal(X) =

n∑
r=1

J∑
j=1

Er,j(X) + E0,J(X).

Proposition 1 The Dirichlet energy is conserved under framelet decomposition:

Etotal(X) =

n∑
r=1

J∑
j=1

Er,j(X) + E0,J(X) = E(X). (5)

Remark 1 The Dirichlet energy components Er,j(X) := X⊤W⊤
r,j∆̃Wr,jX are controlled by Λ2

r,j ,
the diagonal matrix given in Eq. 2, where (r, j) ∈ {(r, j)|r = 1, · · · , n; j = 1, · · · , J} ∪ {(0, J)}.

Proposition 1 and Remark 1 guarantee that we can decompose the signal into low-pass and high-
passes and precisely control their Dirichlet energy proportions, without changing the overall Dirichlet
energy. See the proofs in Appendix A.1.

3.3 Dirichlet Energy Enhancement Architecture

Energy Enhanced Convolution. The key idea to tackle the over-smoothing issue is to preserve
the Dirichlet Energy and avoid its exponential decay to zero with respect to the number of layers.
Motivated by this, we propose a Framelet Augmentation strategy, using the properties of multi-scale
framelets to enhance the overall Dirichlet energy. To take advantage of the energy gap between
low-pass and high-passes, we decouple the low-pass and high-passes propagation and modify the
low-pass adjacency matrix ÂL and high-pass adjacency matrix ÂH separately. The augmented
normalized Laplacian ∆̃ is changed correspondingly, since ∆̃ = IN − Â. ϵ controls the level of
self-enhancement and impairment, which is a hyper-parameter in the implementation.

ÂL = D̂− 1
2 (Ã− ϵI)D̂− 1

2 = Ã− ϵD̂−1, ÂH = D̂− 1
2 (Ã+ ϵI)D̂− 1

2 = Ã+ ϵD̂−1. (6)

∆̃L = IN − ÂL = ∆̃ + ϵD̂−1, ∆̃H = IN − ÂH = ∆̃− ϵD̂−1. (7)

Next, with the modified adjacency matrices in the low-pass and high-passes, we have the following
layer-wise propagation rule of Energy Enhanced Convolution:

H
(l+1)
0,J = σ(ÂLW0,JH

(l)W
(l)
0,J)

H
(l+1)
r,j = σ(ÂHWr,jH

(l)W
(l)
r,j ), for(r, j) ∈ {(r, j)|r = 1, · · · , n; j = 1, · · · , J}

H(l+1) = V(H(l+1)
0,J ;H

(l+1)
1,1 , · · · , H(l+1)

n,J )

(8)

Dirichlet Energy Enhancement. The low-pass component Eϵ
0,J and high-pass components Eϵ

r,j
of Dirichlet energy with modified Laplacian are defined correspondingly as Eq. 9.

Eϵ
0,J(X, ) = (W0,JX)⊤∆̃L(W0,JX) = (W0,JX)⊤(∆̃ + ϵD̂−1)(W0,JX)

Eϵ
r,j(X) = (Wr,jX)⊤∆̃H(Wr,jX) = (Wr,jX)⊤(∆̃− ϵD̂−1)(Wr,jX)

(9)

The following theorem guarantees that we can obtain a strict enhancement of Dirichlet energy during
the feature propagation by Framelet Augmentation.
Theorem 2 The total framelet Dirichlet energy is increased with low-pass adjacency matrix ÂL and
high-pass adjacency matrix ÂH when ϵ > 0, i.e., Eϵ

total(X) =
∑n

r=1

∑J
j=1E

ϵ
r,j(X) +Eϵ

0,J(X) >

Etotal(X) = E(X).

The proof of Theorem 2 is given in Appendix A.3. ϵ > 0 indicates strengthening self-connection to
the high-passes and weakening that to the low-pass.
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3.4 Computational Complexity

To reduce the computational complexity caused by eigendecomposition for graph Laplacians, we
use Chebyshev polynomials to approximate the framelet decomposition in our implementation. The
framelet transform is then equivalent to left-multiplying a specific transformation matrix. We stack
the transformation matrices to obtain a tensor-based framelet transform with the computational
complexity of O(N2(nJ + 1)d). N is the number of nodes, d is the feature dimension, n is the
number of high-pass filters and J is the scale level of the low-pass. See Appendix C.4 for an empirical
study of the complexity.

3.5 Asymptotic Behavior of Framelet Components

We can understand the effect of Framelet Augmentation in terms of the asymptotic behavior of
framelet components. Framelet Augmentation helps to increase the weight of the high-frequency
information of the node itself during the message passing process. It also reduces the proportion of
high-pass component Eϵ

r,j in the total Dirichlet energy, giving rise to the closer distances between
the high-frequency components of node representations. The following proposition implies the
asymptotic behaviors of low-pass and high-pass signals during the learning process.
Proposition 2 Let A be an n×n augmented adjacency matrix, which is (symmetric) positive definite.
λk(A) is the k-th largest eigenvalue of A (k = 1, 2, · · · , n). Let A(ϵ) = A + ϵD, where D is a
positive diagonal matrix. Then λk(A(ϵ)) increases monotonically with ϵ and the following relation
holds:

λk(A
L) ≤ λk(A) ≤ λk(A

H) (ϵ ≥ 0),

where AL and AH are low-pass and high-passes adjacency matrices as defined in Eq. 6.

See proof of Proposition 2 and empirical study of asymptotic behavior of each pass (Figure 4) in
Appendix A.4. According to Theorem 1, adding ϵI as a self-connectivity term in the high-pass
increases its second largest eigenvalue of the adjacency matrix, leading to the slower convergence to
the subspace and impeding the over-smoothing with an overall enhanced Dirichlet energy.

3.6 Equivariance of Framelet Convolution

Equivariance and Invariance are important properties for graph neural networks and we have the
following Proposition.
Proposition 3 An EEConv layer is permutation equivariant.

See the proof in Appendix A.5. The framelet transforms are naturally generalized from the graph
Fourier transform, therefore, framelet decomposition does not destroy the permutation invariance of
graph neural networks. In hence, we can stack multiple EEConv layers, followed by a final invariant
read-out function to obtain an equivariant deep graph neural network.

4 Experiments
To verify the effectiveness of Framelet Augmentation strategy, we evaluate: (A) Dirichlet energy
behavior with respect to the number of layers and homophily level of the graphs and (B) the model’s
performance of node classification over real-world datasets with different homophily levels and the
change of performance with respect to the number of layers.

4.1 Dirichlet Energy Behavior

We select two real-world datasets to verify the effect of framelet augmentation for alleviating the
exponentially decay of Dirichlet energy: Cora which is a relatively homophilous graph dataset with
a homophily level of 0.811, and Chameleon with lower homophily level of 0.23. We show the
layer-wise (logarithm of) Dirichlet energy during the feature propagation through GCN [1], GAT [3],
FeaStNet [22], EGNN [8], FAGCN [11] and our Energy-enhanced UFG (EE-UFG) in Figure 3(a)
and Figure 3(d). When ϵ is selected as 0, our EE-UFG is equivalent to the spatial version of UFG
[15]. We can observe that the Dirichlet energy usually decays fast to zero with respect to the number

1We use the homophily level defined in [21].
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Figure 3: (a) Layer-wise Dirichlet energy with different models on Cora dataset. (b) Layer-wise
framelet Dirichlet energy components. (c) Dirichlet energy over graphs with different p/q ratios by
3-layers model. (d) Layer-wise Dirichlet energy with different models on Chameleon dataset. (e)
Layer-wise framelet Dirichlet energy ratios to the total Dirichlet energy. (f) Dirichlet energy over
graphs with different p/q ratios by 8-layers model.
of layers in the regular graph convolutional models. In heterophilous graphs, some existing models
suffer from Dirichlet energy instability (e.g., EGNN). With framelet augmentation, EE-UFG can lift
the Dirichlet energy to a higher and steady state compared with other baseline models that target
over-smoothing issues, thus making the output features distinguishable.

In Figure 3(b) and Figure 3(e), we plot the absolute value of framelet Dirichlet energy components
and the ratios to the total Dirichlet energy with respect to the number of layers. For the case where
ϵ = 0, the low-pass component and high-passes components quickly decay to zero. One effect of the
message-passing convolutions is that the proportions of high-passes and low-pass in the total Dirichlet
energy tend to be the same, which means the message-passing mechanism automatically eliminates
the energy gap between high-frequency and low-frequency components. However, the EE-UFG with
framelet augmentation not only enhances the overall Dirichlet energy, but also decouples the low-pass
and high-passes signals and preserves the energy gap during the feature propagation.

In Figure 3(c) and Figure 3(f), we use the Stochastic Block Model (SBM) to randomly generate
undirected graphs with 100 nodes that are divided into 2 classes. The node features are sampled from
Gaussian distribution N (0.5, 1) and N (−0.5, 1) for two classes. Edges are generated as Bernoulli
random variables following intra-class connection probability p and inter-class connection probability
q. The ratio of p/q depicts the homophily of the graph. The higher the ratio, the more homophilous the
graph is. Figure 3(c) shows the Dirichlet energy with different p/q ratios. When using 3-layer models,
which is empirically the optimal number of layers for classic GCN, Dirichlet energy decreases as the
homophily decreases. This implies that heterophily and over-smoothing are correlated. Moreover,
the ratio of high-passes Dirichlet energy to the total is 0.564 when p/q = 1 and decreases to 0.096
when p/q = 10. The high passes account for a larger proportion of the total Dirichlet energy in
heterophilous graphs compared with homophilous cases, which indicates that high-pass information
needs more attention in heterophilous graphs. A deeper network is essential for such graphs, because
it creates a larger receptive field during feature propagation and can thus accept more information
from the nodes with the same label. From Figure 3(f), we can observe that in a deeper GNN model,
EE-UFG maintains a consistently higher Dirichlet energy with different p/q ratios than GCN.

4.2 Node Classification Performance

Real-world Datasets. We evaluate our proposed models for node classification tasks on nine
real-world datasets: Texas, Wisconsin, Cornell introduced by [21], Squirrel, Chalmeleon introduced
by [23] and Cora, PubMeb, CiteSeer introduced by [24] and ogb-arxiv introduced by [25]. The
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homophily level ranges from 0.11 to 0.81, which measures the probability of connectivity between
nodes with the same label in the graph. We test our model’s performance on the public split [24] and
calculate the average test accuracy and standard deviation. For each dataset, all models are fine-tuned
and tested on the same train/validation/test split.

Baselines. We select classic GNNs and state-of-the-art methods for heterophilous graphs and
over-smoothing issue as our baselines: (1) classic GNN models: GCN [1], GAT [3], GraphSAGE [2],
UFG [15]; (2) GNNs that can circumvent over-smoothing: GRAND [26], PairNorm [6], GCNII [27],
EGNN [8]; (3) models for heterophilous graphs: FAGCN [11], MixHop [28]. We use the official
codes provided by the authors for all baselines. The hyper-parameter search space for EE-UFG
is given in Appendix C.5. ϵ is a hyper-parameter in our architecture and we search the parameter
space to get the optimal value, which might be different for different tasks. It is also demonstrated in
Figure 3(a) that Dirichlet energy is not sensitive to ϵ.

Texas Wisconsin Squirrel Chameleon Cornell Ogb-arxiv CiteSeer PubMed Cora Rank
Homophily level 0.11 0.21 0.22 0.23 0.30 0.63 0.74 0.80 0.81
#Nodes 183 251 5201 2277 183 169343 3327 18717 2708
#Edges 295 466 198493 31421 280 1166243 4676 44327 5278
#Classes 5 5 5 5 5 40 7 3 6

GCN 55.1±5.2 51.8±3.1 53.2±2.1 64.8±2.4 60.5±5.3 71.7±0.3 71.9±1.8 78.7±2.9 81.5±1.3 6.9
GAT 52.2±6.6 49.4±4.1 40.7±1.5 60.3±2.5 61.9±3.1 72.3±0.9 71.4±1.9 78.7±2.3 81.8 ±1.3 7.8
GraphSAGE 82.4±6.1 81.2±5.6 41.6±0.7 58.7±1.7 76.0±5.0 71.5±0.3 71.6±1.9 77.4±2.2 79.2 ±7.7 6.7
GRAND 75.7±3.3 79.4±3.6 40.1±1.5 54.7±2.5 82.2±7.1 72.2±0.2 74.1±1.7 78.8±1.7 83.6±1.0 5.7
PairNorm 60.3±4.3 48.4±6.1 50.4±2.0 62.7±2.8 58.9±3.2 70.4±1.3 73.6±1.5 78.3±0.4 82.3±1.0 7.2
GCNII 77.5±3.8 80.4±3.4 38.5±1.6 63.9±3.0 77.9±3.8 72.5±0.3 73.4±0.6 80.3±0.4 85.5±0.5 4.5
EGNN 81.0±0.8 88.6±3.2 48.3±2.3 62.7±2.6 83.8±4.6 72.7±1.2 70.4±2.8 80.1±3.6 85.7±3.7 3.3
FAGCN 82.4±6.9 82.9±7.9 42.6±0.8 55.2±3.2 79.2±3.2 70.6±0.8 72.7±0.8 79.4±0.3 84.1±0.5 5.0
MixHop 77.8±2.5 75.4±4.9 43.8±3.4 60.5±3.5 73.5±6.3 - 71.4±0.6 80.8±0.3 81.9±1.2 6.0
UFG 79.3±2.8 78.8±3.2 53.3±1.5 66.9±1.1 75.3±1.1 71.9±0.1 72.7±0.6 79.7±0.1 83.6±0.6 4.4

EE-UFG (ours) 82.3±3.2 85.3±3.3 55.3±1.3 68.0±0.9 82.2±2.8 73.2±3.8 74.2±1.3 79.4±0.9 83.5±0.2 2.2

Table 1: Node classification performance comparison. Best result in bold and second best underlined.
"-" denotes out of memory or inapplicable.

Chameleon (H=0.23) Cornell (H=0.30) CiteSeer (H=0.74) Cora (H=0.81)

#Layer 2 8 16 32 2 8 16 32 2 8 16 32 2 8 16 32

GCN 63.2 58.9 50.2 32.4 60.5 56.4 44.3 28.9 68.7 33.6 28.7 23.1 81.5 35.8 28.5 22.0
UFG 66.2 58.8 53.4 47.7 74.3 65.2 58.4 53.5 71.3 51.2 46.8 40.4 75.1 79.4 57.1 39.1
PairNorm 62.4 54.1 46.4 33.7 50.3 58.4 57.2 57.9 73.6 70.3 58.4 35.8 74.5 81.6 82.3 60.3
GCNII 60.7 62.5 58.7 42.8 67.6 63.2 77.8 76.4 68.2 70.6 72.9 73.4 82.2 84.2 84.6 85.4

EE-UFG 66.2 68.0 63.5 63.5 75.0 82.2 81.3 79.2 64.8 73.6 73.8 72.4 83.5 82.4 83.5 81.4

Table 2: Performance comparison for GCN, UFG and EE-UFG with fix number of layers on three
citation network datasets. The best result of each model is highlighted in Bold.

Results. Table 1 shows the performance comparison on nine node classification tasks. We can
observe that for heterophilous tasks, EE-UFG obtains a great boost compared with baselines, by
better extracting the high-frequency information of the node itself. Our model ranks top 2 over seven
real-world datasets with H < 0.8 that are moderately or highly heterophilous. Over-smoothing
issue is especially detrimental in heterophilous graph tasks, where multi-hop and deeper GNNs are
necessary. In heterophilous graphs, the aggregated information from adjacent nodes contains more
high-frequency information, thus, the high-pass components of the node itself should be better focused.
Besides, EE-UFG inherits multi-hop aggregation properties from the framelet transform, taking into
account all hops in the multi-scale framelet representation, which is essential for heterophilous graphs.
The experimental results emphasize our model’s advantage over heterophilous graphs.

It is known that the performance of GNNs will rapidly decay as the layers are stacked too much. The
GCN-row in Table 2 verifies this phenomenon. We can observe from Table 2 that the UFG suffers
less over-smoothing than classic GCN, partly due to its adaptive filter learning in the frequency
domain. Other baselines, such as PariNom, GCNII, alleviate the over-smoothing issue to some
extent, which however sacrifices performance, especially for heterophilous graphs. Without Framelet
Augmentation, the performance of GNNs may begin to drop before it reaches optimal performance.
The effect of Framelet Augmentation here is to delay the performance decay so that it can achieve the
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best performance with an appropriate number of stacked layers. Our proposed EE-UFG can basically
circumvent over-smoothing and achieve better and more stable performance as the number of layers
increases. From Table 2, we can observe that our model with 32 layers can still perform better than
the best performance of other baselines on heterophilous datasets (e.g., Chameleon and Cornell).
Besides, we can see that the best performance of EE-UFG occurs at a deeper layer.

5 Discussion and Extension
Framelet Systems on Manifold. Framelet systems can be well applied to manifold signals, f ∈
L2(M). Akin to the graph Laplacian, for a given manifold M, we consider its Laplace-Beltrami
operator LB which is defined as LBf = −div(∇f). LL

B and LH
B can then be defined similarly as

Eq. 7 respectively. In general, our proposed framelet augmentation method can be naturally extended
to any other (symmetric) Laplacian-based propagation rules, using the framelet theory on manifolds.
More details about Framelet extension on manifolds are given in Appendix B.

Limitations. Framelet augmentation is based on a symmetric Laplacian and a symmetric adjacency
matrix, which is the general case. However, for some specific cases in geometric deep learning,
such as simplicial complexes, non-square boundary matrices are involved to relate the signals
between simplices of different dimensions. In such cases, our framelet augmentation can not be
implemented. We will consider framelet augmentation strategy for these cases in future work. Besides,
the computational complexity of framelet transform is O(N2(nJ + 1)) which is a bit high.

6 Related Work
Over-smoothing and Dirichlet Energy. One of the widely known plights of GNNs is over-
smoothing, which has been studied by [4, 5, 10, 12, 29]. The Dirichlet energy was commonly used
in these studies. Explanation paying attention to the structure of Laplacian has been undergone by
[4, 9, 10, 30]. A large part of the methods come from empirical techniques in graph convolutional
layers, like reliving the adjacent matrix by sparsification [7], scaling node representations to avoid
features caught into the invariant regime [8], adding residual connections [4, 5, 13]. Several other
empirical methods have been studied recently, like weight normalization [6], edge dropout [7], etc.
Many other attempts beyond the graph matrix analysis also emerged like GCON [31] using ODE
dynamics, GRAND [26] and PDE-GCN [32] regarding GNNs as continuous diffusion processes.
Besides, in the field of spectral analysis, GNNs’ updating process can be viewed as tackling low-
frequency information [11, 11, 19]. However, these empirical techniques lack a necessary theoretical
guarantee. Another type of method is controlling Dirichlet energy to alleviate the over-smoothing
issue, e.g., EGNN. However, Figure 3 (d) shows that EGNN suffers from Dirichlet energy instability
in some heterophilous cases. In contrast, to our best knowledge, we are the first to theoretically prove
the enhancement of Dirichlet energy, taking advantage of multi-scale graph representation.

Wavelet Analysis on Graphs. [33] firstly proposed a formal approach to spatial traffic analysis on
the wavelet transform. Polynomials of a differential operator were used to build a multi-scale tight
frame by [16]. [34] gave the tight framelets framework on manifolds, which was then extended to
graphs by [17, 35] with the fast decomposition and reconstruction algorithms on undecimated and
decimated frames for graph signals. In the regime of signal processing, [36] established a tree-based
wavelet system with localization properties, which is a milestone in the multi-resolution analysis. [37]
apply harmonic analysis to semi-supervised learning and construct Haar-like bases for it. [38–40]
used the Haar-like wavelets system [41] to cope with deep learning tasks.

7 Conclusion
In this work, we develop a framelet analysis on graphs and generalize the generic graph convolution to
a framelet version. Due to the energy difference between the low-pass and high-passes, we originally
propose framelet augmentation which is surprisingly discovered to increase the Dirichlet Energy
associated with the graph and keep it at a high and steady value. In practice, we demonstrate the
behavior of framelet features during the training and the effectiveness of framelet augmentation to
relieve the over-smoothing problem. Experimental Results also show that the proposed EE-UFG
achieve excellent performance on node classification tasks.
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A Theoretical Support
A.1 Framelet Dirichlet Energy Conservation

Here, we give the proof of proposition and remark mentioned in Section 3.
Proposition 4 The Dirichlet energy is conserved under framelet decomposition:

Etotal(X) = E(X). (10)

Proof. Let (r, j) ∈ {(r, j)|r = 1, · · · , n; j = 1, · · · , J} ∪ {(0, J)},

Etotal(X) =
∑
r,j

X⊤W⊤
r,j∆̃Wr,jX

=
∑
r,j

X⊤U⊤Λr,jUU
⊤ΛUU⊤Λr,jUX

=
∑
r,j

X⊤U⊤Λ2
r,jΛUX

=
∑
r,j

∑
i

(UX)2i (λ
i
r,j)

2λi

=
∑
i

(UX)2iλi

= X⊤U⊤ΛUX

= E(X),

where (UX)i is the ith component of UX , and λi, λir,j are the eigen-values of Λ, Λr,j . The fifth
equality is because of the relation

∑
r,j(λ

i
r,j)

2 = 1. Λr,j as follows,

Λ0,J = â(2−K+J−1Λ) · · · â(2−KΛ),

Λr,1 = b̂(r)(2−K+j−1Λ),

Λr,j = b̂(r)(2−K+j−1Λ)â(2−K+j−2Λ) · · · â(2−KΛ).

Therefore, the Dirichlet energy is preserved after the framelet decomposition. ■

Remark 2 The dirichlet energy components Er,j(X) := X⊤W⊤
r,j∆̃Wr,jX are controlled by Λ2

r,j ,
the diagonal matrix given in Eq. 2, where (r, j) ∈ {(r, j)|r = 1, · · · , n; j = 1, · · · , J} ∪ {(0, J)}.

Proof. Using Er,j(X) := X⊤W⊤
r,j∆̃Wr,jX , we obtain

min
i
{(λir,j)2}E(X) ≤ Er,j(X) ≤ max

i
{(λir,j)2}E(X) ≤ 4E,

where we use that the eigenvalues of the normalized Laplacian are in the range of [0, 2], λir,j is the
ith eigenvalue of Λr,j . ■

A.2 Framelet Energy Gap

In this part, we prove the energy gap between low-pass and high-pass coefficients, with the specific
Haar-type filters. We consider L2 norm of feature X as its energy.
Proposition 5 In the framelet system of 2 scales (j = 1, , 2) and 1 high-pass (r = 1) with Haar-
type filters, the energy of the low-pass is larger than the sum of the energy of the high-passes, i.e.
∥W 1

1 ∥2 + ∥W 1
2 ∥2 ≤ ∥V0∥2.

Proof. With the relations that
{
α̂(2ξ) = â(ξ)α̂(ξ)

β̂(2ξ) = b̂(ξ)α̂(ξ)
and

{
â(ξ) = cos(ξ/2)

b̂(ξ) = sin(ξ/2)
, we obtain

β̂(2ξ)

α̂(2ξ)
=
b̂(ξ)

â(ξ)
= tan

(ξ
2

)
.
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As the framelets constitute a tight frame, we have the Parseval identity ∥Ŵ 1
1 ∥2 + ∥V̂0∥2 = ∥X̂∥2.

Thus, we can obtain the explicit expression of α̂ and β̂ as follows,

α̂(Λ/2) = cos(Λ/8) cos(Λ/16), β̂(Λ/2) = sin(Λ/8) cos(Λ/16), β̂(Λ/4) = sin(Λ/16).

This implies the energy difference between low-pass and high-passes reads

∥V̂0∥2 − ∥Ŵ 1
1 ∥2 − ∥Ŵ 1

2 ∥2 = ∥X̂∥2
(∥∥α̂(Λ/2)∥∥2 − ∥∥β̂(Λ/2)∥∥2 − ∥∥β̂(Λ/4)∥∥2) (11)

The RHS of (11) equals to cos2(Λ8 )cos2( Λ
16 )− sin2(Λ8 )cos2( Λ

16 )− sin2( Λ
16 ). Since the eigenvalues of

the normalized Laplacian are in the range of [0, 2], it can be easily verified that the above trigonometric
function is always larger than zero. This then gives ∥W 1

1 ∥2 + ∥W 1
2 ∥2 ≤ ∥V0∥2. ■

Figure 5 shows the L2 norms of low-pass, high-passes, and the sum of high-passes of datasets with
different homophily levels. It empirically verified that there exists an energy imbalance between low
and high-passes, which inspires our energy enhancement strategy.

A.3 Dirichlet Energy Enhancement

Next, we show how the Dirichlet energy is enhanced with framelet augmentation.
Proposition 6 For ϵ > 0, the total framelet Dirichlet energy is increased with low-pass adjacency
matrix ÂL and high-pass adjacency matrix ÂH , i.e., Eϵ

total(X) > Etotal(X) = E(X).

Proof.
Eϵ

total(X) =
∑
r,j

Eϵ
r,j(X) + Eϵ

0,J(X)

=
∑
r,j

(Wr,jX)⊤(∆̃− ϵD̂−1)(Wr,jX) + (W0,JX)⊤(∆̃ + ϵD̂−1)(W0,JX)

=
∑
r,j

X⊤U⊤Λr,jUU
⊤(Λ− ϵD̂−1)UU⊤Λr,jUX +X⊤U⊤Λ0,JUU

⊤(Λ + ϵD̂−1)UU⊤Λ0,JUX

=

ϵX⊤U⊤D̂−1Λ2
0,JUX −

∑
r,j

ϵX⊤U⊤D̂−1Λ2
r,jUX


+

X⊤U⊤ΛΛ2
0,JUX +

∑
r,j

X⊤U⊤ΛΛ2
r,jUX


= ϵX⊤U⊤D̂−1

(
Λ2
0,J −

∑
r,j

Λ2
r,j

)
UX + E(X).

By Proposition 5 and its specific framelet system, Λ2
0,J −

∑
r,j

Λ2
r,j ≥ 0, thus, Eϵ

total(X) ≥ E(X). ■

A.4 Asymptotic Behavior of EE-UFG

Proposition 7 Let A be an n×n augmented adjacency matrix, which is (symmetric) positive definite.
Let λk(A) be the k-th largest eigenvalue of A (k = 1, 2, · · · , n), and A(ϵ) denote A + ϵD, where
D is a positive diagonal matrix. Then, λk(A(ϵ)) increases monotonically with ϵ and the following
relation holds:

λk(A
L) ≤ λk(A) ≤ λk(A

H) for ϵ ≥ 0,

where AL and AH are low-pass and high-passes adjacency matrices as defined in Eq. 6.

Proof. By Eq. 6, we know that AL = Â − ϵD̂−1 and AH = Â + ϵD̂−1, where D̂−1 is a positive
diagonal matrix. For symmetric matrices, we have the Courant-Fischer min-max theorem:

λk(A) = min{max{RA(x)|x ∈ U and x ̸= 0}| dim(U) = k}

with RA(x) =
⟨Ax,x⟩
⟨x,x⟩ . We have RA+B(x) =

⟨(A+B)x,x⟩
⟨x,x⟩ = ⟨Ax,x⟩

⟨x,x⟩ + ⟨Bx,x⟩
⟨x,x⟩ > max{RA(x)}, if B

is positively definite. Thus, we have λk(A+ ϵD̂−1) ≥ λk(A). Similarly, λk(A− ϵD̂−1) ≤ λk(A).
Therefore, λk(AL) ≤ λk(A) ≤ λk(A

H) holds when ϵ ≥ 0. ■
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Figure 4: Layer-wise distances from the feature to the subspace M. The result is an average of 100
runs. The Y-axis is the log relative distance, defined by y(l) = log(dM(X(l))/dM(X(0))). X(0) is
the initial feature representation, and X(l) is the output of the l-th layer.

Figure 4 plots the logarithm of the relative distance from l-th layer’s output to the subspace M, i.e.,
y(l) = log(dM(X(l))/dM(X(0))). The subspace M is defined by M = U ⊗ RC =

{∑M
m=1 em ⊗

wm|wm ∈ RC , em ∈ U
}

⊆ RN×C , where U is the eigenspace associated with the smallest
eigenvalue (that is, zero) of a (normalized) graph Laplacian ∆. We can observe that the low-pass of
EE-UFG converges to a relatively closer distance to the subspace than the high-passes. It can also
be predicted by Proposition 2. The layer-wise outputs of GCN and GAT exponentially approach
the subspace M. This subspace is invariant under any polynomial of the Laplacian Matrix, i.e.,
∀x ∈ M, g(∆)x ∈ M. It corresponds to the low-frequency part of graph spectra and only carries
the information of the connected components of the graph [10].

A.5 Proof of Equivariance

Proposition 8 An EEConv layer is permutation-equivariant.
Proof Let X ∈ Rn×d be the node features, the decomposition W = [W0,2;W1,1;W1,2], the
augmented adjacency matrix A = [AL;AH ;AH ], P is the permutation matrix that is applied to the
node features, and WP the framelet transform of the permuted graph. Then, the following holds for
any permutation matrix P ∈ Rn×n.

PAP⊤WPPX =

PALP⊤WP
0,2PX

PAHP⊤WP
1,1PX

PAHP⊤WP
1,2PX

 =

PALP⊤PU⊤Λ0,2UP
⊤PX

PAHP⊤PU⊤Λ1,1UP
⊤PX

PAHP⊤PU⊤Λ1,2UP
⊤PX

 = PAWX,

where U is the graph Fourier transform, Λr,j is defined in Eq. 2. Similarly, framelet reconstruction
is permutation equivariant. Let f be the function that represents EEConv in Eq. 8, thus, for any
permutation matrix P , we have f(PH(l)) = Pf(H(l)), i.e., f is permutation equivariant.

B An Example: Enhancing Energy for Sheaf Convolution
Framelet systems can be well applied to manifold signals, f ∈ L2(M). Akin to the graph Laplacian,
for a given manifold M, we consider its Laplace-Beltrami operator LB which is defined as LBf =
−div(∇f). LL

B and LH
B can then be defined similarly as Eq. 7 respectively. In general, our proposed

framelet augmentation method can be naturally extended to any other (symmetric) Laplacian-based
propagation rules, using the framelet theory on manifolds.
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The gradient operator ∇ maps x ∈ L2(M) to its associated tangent plane Tx(X) ∈ L2(TM).

To obtain the discrete version, we can sample the manifold M at N points, using polynomial-exact
quadrature rules, like Gauss–Legendre quadrature sampling method. With these points, we can
construct a set of triangular meshes (V,E, F ). The edge connection between i and j indicates that
(i, j) ∈ E is shared by two triangular meshes, as originally proposed by [42]. Using the same formula
for the graph, but replacing the graph Laplacian by the Laplace-Beltrami operator LB , we can define
Manifold framelet transforms as

W0,J ≈ T0(2−K+J−2LB) · · · T0(2−KLB),

Wr,1 ≈ Tr(2−KLB), and Wr,j ≈ Tr(2−K+j−1L)T0(2−K+j−2LB) · · · T0(2−KLB).
(12)

B.1 Diffusion Problems on Manifold

The Laplace-Beltrami operator is closely related to the diffusion process over the manifold, which is
governed by the PDE

ḟ(x, t) = −LBf(x, t), f(x, 0) = f0(x),
where f(x, t) is the signal at point x at time t, f0(x) is the initial condition at point x. In the discrete
setting, let X(t) ∈ RN×d denote the feature representation at time point t. The following propagation
rule can be used to approximate the continuous diffusion process on the manifold:

X(t+1) = X(t) − LBX
(t) = (I − LB)X

(t).

Similar to (8), a framelet manifold convolution for the diffusion process can be derived as follows.
For r = 1, · · · , n and j = 1, · · · , J ,

H
(l+1)
0,J = σ((I − LL

B)W0,JH
(l)W

(l)
0,J), H

(l+1)
r,j = σ((I − LH

B )Wr,jH
(l)W

(l)
r,j );

H(l+1) = V(H(l+1)
0,J ;H

(l+1)
1,1 , · · · , H(l+1)

n,J ),
(13)

B.2 Sheaf Laplacian

Here we discuss Sheaf Lapacians as an example of the generalization of our method to general
manifolds. The definition of the framelet system on the sheaf, which we name as sheaflets, is very
similar to that on the graph but with a sheaf Laplacian which contains tunable parameters. Sheaflets
can then be used to define sheaflet convolution like (3) and then the enhanced sheaflet convolution
as (8). The latter can be proved to follow the same energy enhancement as the graph framelet
convolution.

A cellular sheaf defined over a graph assigns each node and each edge a vector space and introduces
a linear map between the associated spaces of each node-edge pair. In the mathematical language, a
cellular sheaf F on an undirected graph G is given by

1. a vector space F(v) for each vertex v of G,
2. a vector space F(e) for each edge e of G,
3. a linear map Fv◁e: F(v) → F(e) for each incident vertex-edge pair v ◁ e of G.

Construct the Sheaf Laplacian LF : C0(G,F) → C0(G,F), where the diagonal blocks are LFvv
=∑

v◁e F⊤
v◁eFv◁e and the non-diagonal blocks LFvu

= −F⊤
v◁eFu◁e. Compared with the graph

Laplacian, sheaf Laplacian is a Nd×Nd matrix, consisting of a class of linear operators over the
graph, thus allowing the more underlying geometric and algebraic structure of the graph. N is the
number of nodes of G, d is the dimension of the stalks that associated to each node.

B.3 Sheaflets

Let {(ul, λl)}Nd
l=1 the eigen-pair for the sheaf Laplacian LF on l2(G). For j ∈ Z and p ∈ V, the

undecimated sheaflets ϕj,p(v) and ψr
j,p(v), v ∈ V at scale j are filtered Bessel kernels

ϕj,p(v) :=

Nd∑
l=1

α̂

(
λl
2j

)
ul(p)ul(v),

ψr
j,p(v) :=

Nd∑
l=1

β̂

(
λl
2j

)
ul(p)ul(v), r = 1, . . . , n.

(14)
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Here, j and p in ϕj,p(v) and ψr
j,p(v) indicate the “dilation” at scale j and the “translation” at a vertex

p ∈ V. α(·), β(·) are the scaling functions as defined in Section 2. Let J, J1, J > J1 be two integers.
An undecimated sheaflet system UFS(Ψ, η;G) (starting from a scale J1) as a non-homogeneous,
stationary affine system:

UFSJJ1
(Ψ, η) = UFSJJ1

(Ψ, η;G)
:= {ϕJ1,p : p ∈ V } ∪ {ψj,p : p ∈ V, j = J1, . . . , J}nr=1.

(15)

The system UFSJJ1
(Ψ, η) is then called an undecimated tight frame for l2(G) and the elements in

UFSJJ1
(Ψ, η) are called undecimated tight sheaflets on G.

The sheaflet coefficients V0,W r
j ∈ RNd×f are defined as the inner-product of the sheaflet and the

sheaf signal X ∈ RNd×f , where f denotes the feature dimension. The size of V0 and W r
j is the same

as the sheaf signal X . Then,

V0 = ⟨ϕ0,·, X⟩ = U⊤α̂
(Λ
2

)
UX and W r

j =
〈
ψr
j,·, X

〉
= U⊤β̂(r)

( Λ

2j+1

)
UX, (16)

where the scaling functions on G are as follows,

α̂
( Λ

2j+1

)
= diag

(
α̂
( λ1
2j+1

)
, · · · , α̂

( λNd

2j+1

))
, β̂(r)

( Λ

2j+1

)
= diag

(
β̂(r)

( λ1
2j+1

)
, · · · , β̂(r)

( λNd

2j+1

))
.

B.4 Implementation Format

To reduce the computational complexity caused by eigendecomposition for Sheaf Laplacians, we
use Chebyshev polynomials to approximate. Consider Chebyshev polynomials T0, · · · , Tn of fixed
degree t, and filter a ≈ T0 and b(r) ≈ Tr, then the above 2 can be approximated

W0,J ≈ U⊤T0(2−K+J−1Λ) · · · T0(2−KΛ)U = T0(2K+J−2LF ) · · · T0(2−KLF ),

Wr,1 ≈ U⊤Tr(2−KΛ)U = Tr(2−KLF ),

Wr,j ≈ U⊤Tr(2−K+j−1Λ)T0(2−K+j−2Λ) · · · T0(2−KΛ)U

= Tr(2K+j−1LF )T0(2K+j−2LF ) · · · T0(2−KLF ).

LF is the sheaf Laplacian.

B.5 From Sheaf Convolution to Sheaflet Convolution

Sheaf convolution [43, 44] is defined as follows,

Y = σ((INd − LF )(IN ⊗W1)XW2) ∈ RNd×f2 , (17)

where (IN ⊗ W1)XW2 = X̃ ∈ RNd×f2 . Inheriting the characteristics of sheaf convolution in
Eq. (17), we define Sheaflet Convolution based on the sheaf framelet system as

Y0,J = σ((INd − LF )(IN ⊗W1)W0,JXW0,J),

Yr,j = σ((INd − LF )(IN ⊗W1)Wr,jXWr,j),

Y = V(Y0,J ;Y1,1, · · · , Yn,J).
(18)

B.6 Dirichlet Energy for Sheaflets

Applying our Dirichlet energy enhancement strategy to Sheaflet Convolution (Eq. 18), we obtain the
following Energy Enhanced Sheaflet Convolution,

Y0,J = σ((INd − LL
F )(IN ⊗W1)W0,JXW0,J),

Yr,j = σ((INd − LH
F )(IN ⊗W1)Wr,jXWr,j),

Y = V(Y0,J ;Y1,1, · · · , Yn,J),
(19)

where LL
F and LH

F are defined similarly as Eq. 7.
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The sheaflet Dirichlet energy with modified sheaf Laplacian (ϵ > 0) is defined as

Eϵ
0,J(X) = ((IN ⊗W1)W0,JX)⊤(LF + ϵD−1)((IN ⊗W1)W0,JX)

Eϵ
r,j(X) = ((IN ⊗W1)Wr,jX)⊤(LF − ϵD−1)((IN ⊗W1)Wr,jX),

(20)

where D is the degree matrix of the sheaf Laplacian. The total sheaflet Dirichlet energy Eϵ
F (X) =

Eϵ
0,J(X) +

∑
r,j E

ϵ
r,j(X). The original sheaf Dirichlet energy is defined as

EF (X) = ((IN ⊗W1)X)⊤LF ((IN ⊗W1)X).

It can be similarly proved that Eϵ
F (X) > EF (X) when ϵ > 0.

C Experimental Details
C.1 Experimental Setting

The implementation of our model and training is based on PyTorch [45] on NVIDIA Tesla A100
GPU with 6,912 CUDA cores and 80GB HBM2 mounted on an HPC cluster. PyTorch Geometric
Library [46] is employed for all the benchmark datasets and baseline models. For each model, we
run 2000 epochs for ogb-arxiv and 300 epochs for other datasets and select the configuration with the
highest validation accuracy. The results in Table 1 and Table 2 are the average performance of each
model over 10 fixed public splits.

C.2 Datasets

We conduct experiments over 8 node classification datasets in 3 types:

1. Citation Network: The Cora, CiteSeer, PubMed are citation network datasets introduced by
[24], where nodes represent documents in the computer science fields and edges represent
citation links.

2. Webpage Network: The Texas, Wisconsin, and Cornell are webpage network datasets intro-
duced by [21]. Nodes are the web pages and edges are the hyperlinks between them. Node
features are bag-of-words representations of web pages. Nodes are classified into one of five
categories: Students, Projects, Courses, Faculty and Staff.

3. Wikipedia Network: The Chameleon and Squirrel are Wikipedia network datasets, introduced
by [23]. Nodes are the web pages and edges are the hyperlinks between them. Node features
represent several informative nouns on Wikipedia pages.

4. Ogb-arxiv: The ogb-arxiv dataset is a citation network of Computer Science arxiv papers
introduced by [25]. Each node represents a paper and each directed edge indicates that one
paper cites another one. Each node has a 128-dimensional feature that is averaged from the
embeddings of words in its title and abstract. The task is to predict the 40 categories of the arXiv
CS papers, which used to be labeled manually. However, with the increasing volume of CS
papers, it is necessary to develop an automatic classification model.

Citation Network, Webpage Network and Wikipedia Network datasets are available at https:
//pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html. Ogb-arxiv
dataset is available at https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv.

C.3 Baselines Selection

We select classic GNNs and state-of-the-art methods for heterophilous graphs and over-smoothing
issues as our baselines: (1) classic GNN models: GCN [1], GAT [3], GraphSAGE [2], UFG [15]; (2)
GNNs that can circumvent over-smoothing: GRAND [26], PairNorm [6], GCNII [27], EGNN [8];
(3) models for heterophilous graphs: FAGCN [11], MixHop [28]. For each model, we use the official
codes provided by the authors. All models use the same train/validate/test split for a fair comparison.
We notice that there were some impressive performance over Cora/CiteSeer/PubMed reported in
the previous literature, like H2GCN [47], Geom-GCN [21], GGCN [48]. We do not adopt them as
baseline models here because they randomly generate the train/validate/test split, which is different
from our experimental setting.
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Figure 5: Energy (L2 norm) of framelet coefficients for the 8 datasets.
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Figure 6: Running time comparison

C.4 Computational Complexity

The time complexity of the algorithm is important for real-world deployment, especially for extremely
large graph data. The framelet transform is equivalent to left-multiplying a specific transformation
matrix. We stack the transformation matrices to obtain a tensor-based framelet transform with the
computational complexity of O(N2(nJ+1)d). N is the number of nodes, d is the feature dimension,
n is the number of high-pass filters and J is the scale level of the low-pass. In our implementation,
we fix n = 1, J = 2. Benefiting from an efficient message passing operator in PyTorch Geometry,
we construct a large sparse adjacency matrix and stack all the passes, thus, the message passing in all
passes can be executed in parallel.

Figure 6 plots the running time on eight datasets we used. The number of nodes increases sequentially
from left to right on the X-axis. The Y-axis is the logarithm of running time (in seconds). Each model
has the same configuration, including hidden units, number of layers, etc., and run 300 epochs. We
can observe from the figure summary that EE-UFG has a computational complexity close to GAT,
especially when the number of nodes is large.

Parameter Search Space

Learning rate [1× 10−5, 1× 10−1]
Hidden units {16, 32, 64, 128}
Number of layers [1, 10]
Epsilon [1× 10−5, 1× 10−1]
Dropout rate {0.2, 0.4, 0.6, 0.8}
Weight decay [5× 10−3, 1× 10−2]

Table 3: Hyper-parameter Search Spaces of EE-UFG
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C.5 Hyper-parameter and Model Implementation

We employ Adam [49] as our optimizer, and ASHAScheduler [50] as our scheduler. Each model is
fine-tuned with Ray [51]. Table 3 provides the hyper-parameter search space for reproduction. All
baseline models are implemented with the official codes released by the authors. Our code will be sub-
mitted to an anonymous link: https://anonymous.4open.science/r/EE_Framelet-24BA/.
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