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Abstract

Extreme learning machine (ELM), proposed by Huang et al., has been regarded as a
fast learning machine for single hidden layer neural networks. ELM randomly selects
the input weights and biases and directly calculates the output weights rather than
searching and using iterative methods as traditional algorithms do, which produces
the smallest norm and thus obtains the minimum training error. However, some
limitations of stochastic choice of hidden layer output matrix will lower to some ex-
tend the learning rate and the robustness property of the calculations. This paper
proposes a modified ELM algorithm which properly selects the input weights and
biases before training the output weights of single-hidden layer feedforward neural
networks with Sigmoidal activation function, and proves mathematically the hidden
layer output matrix maintains full column rank which improves the speed of train-
ing output weights. The experimental results of both regression and classification
problems show good performance of our improved ELM algorithm.

Key words: Feedforward neural networks, Back-propagation algorithm, Extreme
learning machine, Moore-Penrose generalized inverse.

1 Introduction

Feedforward neural networks have been deeply and systematically studied for
their universal approximation capabilities on compact input sets and approxi-
mation in a finite set. Cybenko [9] and Funahashi [12] proved that any continu-
ous function can be approximated on a compact set with uniform topology by
an sigle-hidden layer feedforward neural network (SLFN) with any continuous
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sigmoidal activation function. Hornik in [14] have shown that any measurable
function can be approached with such networks. A variety of results on SLFN
approximations to multivariate functions were later established by many au-
thors: [3]-[6], [30]-[31] by Cao, Xu et al., [7],[8] by Chen and Chen, [13] by
Hahm and Hong, [22] by Leshno et al., etc. SLFNs have been extensively used
in many fields due to their abilities: (1) to approximate complex nonlinear
mappings directly from the input samples; and (2) to provide models for a
large class of natural and artificial phenomena that are difficult to handle
using classical parametric techniques.

We know that the problems of density and complex in neural network are
theoretical bases for algorithms. In practical applications, we often pay close
attention to the faster learning algorithms of neural networks in a finite train-
ing set.

Huang and Babri [15] showed that a single-hidden layer feedforward neural
network with at most N hidden nodes and with almost any nonlinear acti-
vation function can exactly learn N distinct samples. Although conventional
gradient-based learning algorithms, such as back-propagation (BP) and its
variant Levenberg-Marquardt (LM) method, have been extensively used in
training of multilayer feedforward neural networks, these learning algorithms
are still relatively slow and may also easily get stuck in a local minimum.
Support vector machines (SVMs) have been extensively used for learning al-
gorithms and famous for its good generalization ability. However, fine tuning
of SVM kernel parameters is a time-intensive process.

Recently, a new learning algorithm for SLFN named the extreme learning ma-
chine (ELM) has been proposed by Huang et al. in [20], [21]. Unlike traditional
approaches (such as BP algorithms, SVMs), ELM algorithm has concise archi-
tecture, no need to tune input weights and biases. Particularly, the learning
speed of ELM can be thousands of times faster than traditional feedforward
network learning algorithms like BP algorithm. Compared with traditional
learning algorithms ELM not only tends to reach the smallest training er-
ror but also the smallest norm of weights. According to Bartlett (see [2]),
feedforward the smaller training error neural networks reach and the norm of
weights is, the better generalization performance the networks tend to have.
Therefore, the ELM can have good generalization performance. So far much
work has been conducted on ELM and related problems (see, e.g., [10], [17],
[18]-[19], [21]-[22], [28]).

The ELM algorithm of SLFNs can be summarized as the following three steps:

Algorithm of ELM: Given a training set N = {(Xi, ti)| ∈ Rd, ti ∈ R, i =
1, 2, . . . , n} and activation function g, hidden node number N .
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Step 1: Randomly assign input weightWi and bias bi (i = 1, 2, . . . , N).

Step 2: Calculate the hidden layer output matrix H.

Step 3: Calculate the output weight β by β = H†T , here H† is the
Moore-Penrose generalized inverse ofH and T = (t1, t2, . . . , tn)

T .

Several methods can be used but are not limited to orthogonal projection
method, iterative method, and singular value decomposition (SVD). The or-
thogonal projection, orthogonalization method and iterative method have their
limilations since searching and iteration may consume extra training time. The
orthogonal project method can be used when the output matrix has full col-
umn rank matmix, so the method may not perform well in all applications.
The SVD can be generally used to calculate the Moore-Penrose generalized
inverse of output matrix in all cases but it costs a lot of time. This paper will
design a learning machine which first properly train input weights and biases
such that the output matrix is column full-rank, then we can use orthogonal
project method to calculate the Moore-Penrose generalized inverse of output
matrix.

This paper is organized as follows. Section 2 gives theoretical deductions of
modified ELM algorithm with Sigmoidal activation function. Section 3 pro-
posed a modified ELM algorithm. Section 4 present performance evaluation.
Section 5 consists of the discussions and conclusions.

2 Theoretical Deductions of Modified ELM Algorithm with Sig-
moidal Activation Function

For N arbitrary distinct sample (Xi, ti), where Xi = (xi1, xi2, · · · , xid)
T ∈ Rd

and ti = (ti1, ti2, · · · , tim) ∈ Rm, standard SLFNs with Ñ hidden nodes and
activation function g(x) are mathematically modeled as

GÑ(X) =
Ñ∑
i=1

βig(Wi ·X + bi),

where βi = (βi1, βi2, · · · , βiÑ)
T is the output weight vector connecting the i-th

nodes and output nodes, Wi = (wi1, wi2, · · · , wid)
T is the input weight vector

connecting the i-th hidden nodes and the input nodes, and bi is the threshold
of the i-th hidden node. That SLFNs GÑ(x) can approximate these N samples
with zero error means

GÑ(xj) = tj, j = 1, 2, · · · , N,

the above N equation can be written as

Hβ = T,

3



where

H =H(w1, w2, · · · , wÑ ; b1, b2, · · · , bÑ ; X1, X2, · · · , XN)

=



g(W1 ·X1 + b1) g(W2 ·X1 + b2) · · · g(WÑ ·X1 + bÑ)

g(W1 ·X2 + b1) g(W2 ·X2 + b2) · · · g(WÑ ·X2 + bÑ)
...

... · · · ...

g(W1 ·XN + b1) g(W2 ·XN + b2) · · · g(WÑ ·XN + bÑ)


N×Ñ

,

β =



βT
1

βT
2

...

βÑ


Ñ×m

and T =



tT1

tT2
...

tN


N×m

.

As named in Huang et al. [15]-[16], H is called the hidden layer output matrix
of the neural network.

In most cases, the number of hidden nodes is much less than the number of
training samples,Ñ ≪ N. Then, there may not exist wi, bi, βi(i = 1, 2, · · · , Ñ)
such that Hβ = T. But when H has been given, we can use the least-squares
method to find the least-squares solutions of Hβ = T. Furthermore, we can
reach the special solution β̂

∥Hβ̂ − T∥ = min
∥β∥

∥Hβ − T∥,

this β̂ is the minimum norm least-squares solution. From [24]-[27],

β̂ = H†T,

whereH† is called the Moore-Penrose generalized inverse of matrix ofH. Thus,
the output weight of ELM algorithm is

β = H†T.

Suppose X1, X2 ∈ Rd, Xi = (xi1, xi2, · · · , xid), i = 1, 2. We say X1 ≺ X2 if
and only if there exists j0 ∈ {1, 2, · · · , d} such that x1j0 < x2j0 , x1j = x2j, j =
j0 + 1, · · · , d.
Lemma 2.1. For n distinct vectors X1 ≺ X2 ≺ · · · ≺ Xn ∈ Rd(d ≥ 2), there
exists a vector W ∈ Rd such that

W ·X1 < W ·X2 < · · · < W ·Xn.
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Proof. For Xi = (xi1, xi2, · · · , xid), i = 1, 2, · · · , n, we set

w1
j :=

1

1 + max
i

{|xij|}
, j = 1, 2, · · · , d,

then

x1
ij = w1

jxij ∈ [−1, 1], i = 1, 2, · · · , n, j = 1, 2, · · · , d.

Let

y1ij = |x1
i+1,j − x1

ij|, i = 1, 2, · · · , n− 1, j = 1, 2, · · · , d.

For given j(1 ≤ j ≤ d), if y1ij = 0 for all i = 1, 2, · · · , n− 1, then let nj = 2d;
if not

nj =
4d

min
y1ij ̸=0

{y1ij}
.

Obviously, we have

nj ≥ 2d, j = 1, 2, · · · , d.

Define

w2
j := w1

jΠ
j
i=1ni, j = 1, 2, · · · , d,

and

W = (w2
1, w

2
2, · · · , w2

d).

For fixed i(1 ≤ i ≤ n − 1), from Xi ≺ Xi+1 we see that there exists k0 ∈ N
such that

xik0 < xi+1,k0 ; xij = xi+1,j, j = k0 + 1, · · · , d.

Write

W ·Xi+1 −W ·Xi =
k0−1∑
k=1

(x1
i+1,k − x1

i,k)Π
k
s=1ns + (x1

i+1,k0
− x1

ik0
)Πk0

s=1ns

=: I1 + I2.

Since

|I1| ≤ 2(n1 + n1n2 + · · ·+ n1n2 · · ·nk0−1)

= 2Πk0−1
s=1 ns

(
1 +

1

nk0−2

+ · · ·+ 1

n2 · · ·nk0−1

)

≤ 2Πk0−1
s=1 ns ·

1

1− 1
2d

< 2dΠk0−1
s=1 ns.

And
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|I2|=Πk0−1
s=1 ns · nk0(x

1
i+1,k0

− x1
ik0
)

=Πk0−1
s=1 ns · nk0 · y1i,k0

≥Πk0−1
s=1 ns · y1i,k0 ·

4d

y1ik0
=4dΠk0−1

s=1 ns.

We get W ·Xi+1 −W ·Xi > 0, that is, W ·Xi < W ·Xi+1. This finishes the
proof of Lemma 2.1. 2

Suppose that σ(x) is a bounded Sigmoidal function, then

lim
x→+∞

σ(x) = 1, lim
x→−∞

σ(x) = 0.

Set

δσ(A) := sup
x≥A

max{|1− σ(x)|, |σ(−x)|},

we have

lim
A→+∞

δσ(A) = 0.

Let (x1, y1), (x2, y2), · · · , (xn, yn) is a set of samples, and x1 < x2 < · · · < xn.
Then, we have
Lemma 2.2. There exist numbers w1, w2, · · · , wn and α1, α2, · · · , αn such that
matrix

Gσ =



σ(w1x1 + α1) σ(w2x1 + α2) · · · σ(wnx1 + αn)

σ(w1x2 + α1) σ(w2x2 + α2) · · · σ(wnx2 + αn)
...

... · · · ...

σ(w1xn + α1) σ(w2xn + α2) · · · σ(wnxn + αn)


is nonsingular.

Proof. Since

lim
A→+∞

δσ(A) = 0,

there exists A > 0, such that δσ(A) <
1
4n
. Hence

|1− σ(A)| < 1

4n
, |σ(−A)| < 1

4n
,

and

|σ(c)| < 1

4n
, |1− σ(−c)| < 1

4n
, c < −A.
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We choose

w1 = − 2A
x2−x1

, w2 = − 2A
x3−x2

, · · · , wn−1 = − 2A
xn−xn−1

, wn = − 2A
xn−xn−1

,

α1 = A+ 2Ax1

x2−x1
, α2 = A+ 2Ax2

x3−x2
, · · · , αn−1 = A+ 2Ax1

xn−xn−1
, αn = A+ 2Axn

xn−xn−1
,

it follows that

Gσ =



σ(A) σ

(
− 2A(x1−x2)

x3−x2
+A

)
··· σ

(
− 2A(x1−xn−1)

xn−xn−1
+A

)
σ

(
− 2A(x1−xn)

xn−xn−1
+A

)
σ(−A) σ(A) ··· σ

(
− 2A(x2−xn−1)

xn−xn−1
+A

)
σ

(
− 2A(x2−xn)

xn−xn−1
+A

)
...

... ···
...

...
σ

(
− 2A(xn−1−x1)

x2−x1
+A

)
σ

(
− 2A(xn−1−x2)

x3−x2
+A

)
··· σ(A) σ

(
− 2A(xn−1−xn)

xn−xn−1
+A

)
σ

(
− 2A(xn−x1)

x2−x1
+A

)
σ

(
− 2A(xn−x2)

x3−x2
+A

)
··· σ(−A) σ(A)


.

In turn, subtract the 2th row from the first row, the 3th row from the 2th
row, · · · · · · , and the keep the last row unchanged. Denote the matrix that
has performed the above row operations by G̃σ = (g̃ij)n.

Now for i = 1, 2, . . . , n − 1, the elements of the i-th row can be estimated as
follows. For j = 1, . . . , i− 1, since

−2A(xi − xj)

xj+1 − xj

+ A < −A,

|g̃ij|=
∣∣∣∣∣σ
(
−2A(xi − xj)

xj+1 − xj

+ A

)
− σ

(
−2A(xi+1 − xj)

xj+1 − xj

+ A

)∣∣∣∣∣ < 1

2n
.

For j = i,

|g̃ii|= |σ(A)− σ(−A)| ≥ 1− (|1− σ(A)|+ |σ(−A)|) > 1− 1

2n
.

For j = i+ 1, . . . , n− 1,

−2A(xi − xj)

xj+1 − xj

+ A > A,

implies
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|g̃ij|=
∣∣∣∣∣σ
(
−2A(xi − xj)

xj+1 − xj

+ A

)
− σ

(
−2A(xi+1 − xj)

xj+1 − xj

+ A

)∣∣∣∣∣
≤
∣∣∣∣∣1− σ

(
−2A(xi − xj)

xj+1 − xj

+ A

)∣∣∣∣∣+
∣∣∣∣∣1− σ

(
−2A(xi+1 − xj)

xj+1 − xj

+ A

)∣∣∣∣∣
<

1

2n
.

For j = n, we can similarly obtain that

|g̃in|=
∣∣∣∣∣σ
(
−2A(xi − xn)

xn − xn−1

+ A

)
− σ

(
−2A(xi+1 − xn)

xn − xn−1

+ A

)∣∣∣∣∣ < 1

2n
,

In the n-th row of G̃σ, for j = 1, 2, ..., n− 1,

−2A(xn − xj)

xj+1 − xj

+ A < −A

which implies

|g̃nj| <
1

4n
and

g̃nn = σ(A) > 1− 1

4n
.

Therefore,
|g̃ii| >

∑
1≤i ̸=j≤n

|g̃ij|, i = 1, 2, . . . , n,

that is, G̃σ is strictly diagonally dominant which guarantees that G̃σ is non-
singular and thus the non-singularity of Gσ. 2

For Xi ∈ Rd, i = 1, 2, · · · , N, and X1 ≺ X2 ≺ · · · ≺ XN . From Lemma 1 we
know that there exists W ∈ Rd, such that

W ·X1 < W ·X2 < · · · < W ·XN .

Let xi = W ·Xi, i = 1, 2, · · · , N, and set

W1 = − 2A
x2−x1

W, W2 = − 2A
x3−x2

W, · · · , WN−1 = − 2A
xN−xN−1

W, WN = − 2A
xN−xN−1

W.

b1 = A+ 2Ax1

x2−x1
, b2 = A+ 2Ax2

x3−x2
, · · · , bN−1 = A+ 2AxN−1

xN−xN−1
, bN = A+ 2AxN

xN−xN−1
,

where A satisfies δσ(A) < 1/(4N). From Lemma 2.2, we have
Theorem 2.1. Suppose σ(x) is a bounded Sigmoidal function, Xi ∈ Rd, i =
1, 2, · · · , N, and X1 ≺ X2 ≺ · · · ≺ XN . Then, there exist Wi ∈ Rd, bi ∈ R, i =
1, 2, · · · , N, such that the matrix
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H =



σ(W1 ·X1 + b1) σ(W2 ·X1 + b2) · · · σ(WN ·X1 + bN)

σ(W1 ·X2 + b1) σ(W2 ·X2 + b2) · · · σ(WN ·X2 + bN)
...

... · · · ...

σ(W1 ·XN + b1) σ(W2 ·XN + b2) · · · σ(WN ·XN + bN)


is nonsingular.

By the knowledge of matrix and Theorem 2.1, we have
Corollary 2.1. Suppose Xi ∈ Rd, i = 1, 2, · · · , N are N distinct vectors,
N > Ñ. Then, there exist Wi ∈ Rd, bi ∈ R, i = 1, 2, · · · , Ñ such that the
matrix

H =



σ(W1 ·X1 + b1) σ(W2 ·X1 + b2) · · · σ(WÑ ·X1 + bÑ)

σ(W1 ·X2 + b1) σ(W2 ·X2 + b2) · · · σ(WÑ ·X2 + bÑ)
...

... · · · ...

σ(W1 ·XN + b1) σ(W2 ·XN + b2) · · · σ(WÑ ·XN + bÑ)


N×Ñ

is full column rank.

3 An Improved ELM Using Sigmoidal Activation Function

According to the discussion of Sectioin 2, we can based on ELM algorithm pro-
pose a new algorithm which uses Sigmoidal function as its activation function
and can make use of orthogonal projection method to calculate the output
weights. We states the modified extreme learning machine in the following
algorithm.

Algorithm of Modified ELM: Given a training data setN = {(X∗
i , t

∗
i )|X∗

i ∈
Rd, t∗i ∈ R, i = 1, 2, . . . , n}, activation function of Sigmoidal function (for in-
stance, g(x) = 1/(1 + e−x)) and hidden node number N .

Step 1: Select weights Wi and bias bi (i = 1, 2, . . . , N).

Sort the former N samples (X∗
i , t

∗
i ) (i = 1, 2, . . . , N) in terms of W ·X∗

1 ,W ·
X∗

2 , . . . ,W · X∗
N such that W · X∗

i1
< W · X∗

i2
< · · · < W · X∗

iN
(ij ̸= ik for

j ̸= k, j, k = 1, 2, . . . , N and ij = 1, 2, . . . , N) and denote the sorted data
as (Xi, ti) (i = 1, 2, . . . , n) and Xi = (xi1, xi2, . . . , xid) (i = 1, 2, . . . , n). For
j = 1, 2, . . . , d, make following calculations.

9



w1
j =

1

max
i=1,2,...,N

{|xij|}
> 0,

x1
ij = w1

jxij ∈ [−1, 1],

y1ij =
∣∣∣x1

i+1,j − x1
ij

∣∣∣ (i = 1, 2, . . . , N − 1),

nj =


2d, if y1ij = 0 for all i = 1, 2, . . . , N − 1,

4d

min
y1ij ̸=0

{
y1ij
} , else,

w2
j = w1

jΠ
j
i=1ni.

Set
W =

(
w2

1, w
2
2, . . . , w

2
d

)
.

Let ai = W ·Xi,

Wi =
2A

ai − ai
W, i = 1, 2, . . . , N − 1,

WN = WN−1,

bi = A+
2Aai

ai+1 − ai
, i = 1, 2, . . . , N = 1,

bN = A+
2AaN

aN − aN−1

.

Step 2: Calculate output weights β = (β1, β2, . . . , βN) (i = 1, 2, . . . , N).

Let T = (t1, t2, . . . , tn)
T and

H =



σ(W1 ·X1 + b1) σ(W2 ·X1 + b2) . . . σ(WN ·X1 + bN)
...

... . . .
...

σ(W1 ·XN + b1) σ(W2 ·XN + b2) . . . σ(WN ·XN + bN)

σ(W1 ·XN+1 + b1) σ(W2 ·XN+1 + b2) . . . σ(WN ·XN+1 + bN)
...

... . . .
...

σ(W1 ·Xn + b1) σ(W2 ·Xn + b2) . . . σ(WN ·Xn + bN)


n×N

.

Then
β = H†T = (HTH)−1HT .
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The ELM proved in practice to be an extremely fast algorithm. This is because
it randomly chooses the input weights Wi and biases bi of the SLFNs instead
of carefully selecting. However, this big advantage makes the algorithm less
effective sometimes. As discussed in [28], the random selection of input weights
and biases is likely to yield an unexpected result that the hidden layer output
matrix H is not full column rank, which might cause two difficulties that
cannot be overcome theoretically. First, the SLFNs cannot approximate the
training samples with zero error, which largely lowers the prediction accuracy.
Secondly, it is known that the orthogonal projection is typically faster than
SVD, and the algorithm proposed here can make good use of the faster method
which is unable to be used in ELM due to the requirement of non-singularity
of HTH.

4 Performance Verification

In this section, the performance of the proposed new ELM learning algorithm
is measured compared with the ELM algorithm. The simulations for ELM
and modified ELM algorithms are carried out in the Matlab 7.10 environment
running in AMD athlon(tm) II, X3, 425 processor with the speed of 2.71
GHz . The activation function used in algorithm is Sigmoid function g(x) =
1/(1 + e−x).

4.1 Benchmarking with a regression problem: approximation of ‘SinC’ func-
tion with noise

First of all, we use the ‘Sinc’ function to measure the performance of ELM
and the modified ELM algorithms. The target function is as follows.

y = f(x) =

 sin(x)/x x ̸= 0,

1 x = 0.

A training set {(Xi, ti)} and testing set {(Xi, ti)} with 5000 samples are re-
spectively created, where Xi in both training and testing data is distributed in
[−10, 10] with uniform step length. The experiment is carried out on these da-
ta as follows. There are 20 hidden nodes assigned for both ELM and modified
ELM algorithms. Fifty trials have been conducted for the ELM algorithm to
eliminate the random error and the results shown are the average results. Re-
sults shown in Table 1 include training time, testing time, training accuracy,
testing accuracy and the number of nodes of both algorithms.
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Algorithms Time Accuracy #Nodes

TrainingTesting Training Testing

ELM 0.0684 0.0231 0.1144 0.0061 20

±2.1315× 10−5 ±3.9747× 10−4

modified ELM 0.0563 0.0197 0.1243 0.0.0466 20

±1.4019× 10−16±5.6075× 10−17 20

Table 1
Performance comparison for learning function: SinC

Figure 1. Outputs of ELM learning algorithm

It can be seen from Table 1 that the modified ELM algorithm spent 0.0563s,
0.0197s CPU time training and testing respectively whereas it takes 0.0684s
and 0.0231 for the ELM algorithm to complete the same process. Therefore
the new algorithm is quicker than ELM. Simultaneously, for the accuracy of
training and testing of modified ELM, the standard deviation of training and
testing time are smaller than those of ELM, so the new algorithm is more
stable.
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Figure 2. Outputs of modified ELM learning algorithm

Figure 2 shows the expected and approximated results of modified ELM al-
gorithm and Figure 1 shows the true and the approximated results of ELM
algorithm. The results show that the modified ELM algorithm has a good
performance as ELM does.

4.2 Benchmarking with Practical problems applications

Performance comparison of the proposed modified ELM and the ELM algo-
rithms for four real problems are carried out in this section. Classification and
regression tasks are included in four real problems. Two classification tasks
including Diabetes, Glass Identification (Glass ID), and two regression tasks
including Housing and Slump (Concrete Slump). All the data sets are from
UCI repository of machine learning databases [1]. The speculation of each
database is shown in the Table 2. For the databases that have only one data
table, as conducted in [11], [25], [26], [29], 75% and 25% of samples in the
problem are randomly chosen for training and testing respectively at each
trial.

In order to reduce the random error, for every database, we conduct fifty trials
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for the two algorithms,and then take the average of fifty times as final results.
The results are reported in Table 3, Table 4 and Table 5, which show that in
our simulation, on the average, ELM and the modified ELM algorithms are
discriminating sightly in the learning time which is reported in Table 5, they
both have a fast learning rate.However, contrasting with ELM,the modified
ELM has a more stabilized accuracy of training and testing which can refer
to the Table 4, especially in the case regression problems, this advantage is
obvious. From Table 3, we may observe that the modified ELM algorithm is
better than ELM in the accuracy of learning for the regression cases.

Data sets # Observations # Attributes Associated Tasks #Nodes

Training Testing Continuous

Diabetes 576 192 8 Classification 20

Glass ID 160 54 9 Classification 10

Housing 378 126 14 Regression 80

Slump 76 27 10 Regression 10

Table 2
Speculations of real-world applications and the number of nodes for each

Data sets ELM new ELM

Training Testing Training Testing

Diabetes 0.7892 0.7770 0.6901 0.6581

Glass ID 0.9485 0.526 0.9375 0.4630

Housing 0.0691 0.0025 0.1214 0.0157

Slump 7.8446 3.4696× 107 7.1422 12.2175

Table 3
Comparison training and testing accuracy (error) of ELM and modified ELM

Compared to ELM algorithm, the modified ELM selects the input weights and
biases, which helps to avoid risk of the random errors as we can see from the
Figure 3 - Figure 18.
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Data sets ELM modified ELM

Training Testing Training Testing

Diabetes 0.0116 0.0275 0.0142 0.0281

Glass ID 0.0027 0.0264 0 5.6075× 10−17

Housing 0.0110 0.0043 9.3181× 10−17 0

Slump 0.1995 2.4271× 108 5.3832× 10−15 1.2561× 10−14

Table 4
Comparison of training and testing RMSE of ELM and modified ELM

Data sets ELM(s) modified ELM(s)

Training Testing Training Testing

Diabetes 0.0034 0.0028 0.0078 0.0044

Glass ID 0.0031 0.0019 0.0178 0.0037

Housing 0.0081 0.0053 0.0088 0.0028

Slump 0.0091 0.0028 0.0163 0.0019

Table 5
Comparison of average training and testing time of ELM and modified ELM
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Figure 3. Training accuracy of ELM
for Diabetes
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Figure 4. Training accuracy of modi-
fied ELM for Diabetes
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Figure 5. Testing accuracy of ELM for
Diabetes
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Figure 6. Testing accuracy of modi-
fied ELM for Diabetes
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Figure 7. Training accuracy of ELM
for GlassID
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Figure 8. Training accuracy of modi-
fied ELM for GlassID
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Figure 9. Testing accuracy of ELM for
GlassID
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Figure 10. Testing accuracy of modi-
fied ELM for GlassID

5 Conclusions

This paper proposed a modified ELM algorithm based on the ELM for training
single-hidden layer feedforward neural networks (SLFNs) in an attempt to
solve the least-squares minimization of SLFNs in a more effective way and
meanwhile solves the open problem of [28]. Compared with ELM, the modified
ELM algorithm proposed have several features as follows.
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Figure 11. Training accuracy of ELM
for Housing
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Figure 12. Training accuracy of mod-
ified ELM for Housing
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Figure 13. Testing accuracy of ELM
for Housing
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Figure 14. Testing accuracy of modi-
fied ELM for Housing
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Figure 15. Training accuracy of ELM
for Slump
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Figure 16. Training accuracy of mod-
ified ELM for Slump

(1) The learning speed of modified ELM is as fast as ELM. The main
difference between the modified ELM and ELM algorithms lie in the
selection of input weights and biases. Our modified algorithm selects
the input weights and biases properly, which, however, consumes little
time compared with the training time of output weights.

(2) The proposed ELM by making proper selection of input weights and
biases of the neural networks avoids the risk of yielding singular or
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Figure 17. Testing accuracy of ELM
for Slump
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Figure 18. Testing accuracy of modi-
fied ELM for Slump

not full column rank hidden layer output matrixH. This ensures that
the orthogonal projection which is a fast method to calculate can be
used to calculate the Moore-Penrose generalized inverse of H.

(3) The modified ELM algorithm overcome the shortcomings of EELM,
the algorithm proposed in [28], that is, it can use Sigmoidal function
as activation function to train the networks but still keep the qualities
of ELM and EELM: fast and stable and in many cases perform better.

(4) It is worthwhile to point out that our modified ELM algorithm per-
forms very well in most cases listed above regardless of the number
of samples, which is another beautiful feature of the new ELM and
to some extent superior to EELM.

(5) Another point that should be mentioned is that in our algorithm in
order to sort the samples by affine transformation X 7→ W · X +
b, we adopt the similar method of decimal numeral system as in
[28]. The problem of “curse of dimensionality” still exists here and
when encountering high-dimensional data, our algorithm become less
effective sometimes.
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